The fetal and early postnatal stages are periods of rapid brain development, during which, methylmercury (MeHg) ex-posure can cause lasting cognitive impairments. MeHg exposure disrupts neurotransmitter metabolites, which in-creased susceptibility to neurological responses. However, the neurotoxic mechanism underlying the MeHg-induced disruption of neurotransmitter metabolism requires further exploration. To this end, female Sprague-Dawley (SD) rats were administered NaCl (control group) or MeHg (0.6 mg/kg, 1.2 mg/kg and 2.4 mg/ kg body weight (bw), where the body weight refers to the dams) during the perinatal period, and then changes in neurotransmitter profiles and the gut microbiota of offspring were detected. The results showed that tryptophan (Trp) and tyrosine (Tyr) path-way neurotransmitter metabolites, including serotonin (5-HT), 5-hydroxy indole acetic acid (5-HIAA), N-acetyl-5-hydroxytryptamin (NAS), Tyr, dopamine (DA) and epinephrine (E), were significantly changed, and the Kynurenine/Tryptophan (Kyn/Trp) ratio was increased in the MeHg-treated groups. Meanwhile, acetylcholine (ACh) and neurotransmitters involved in the amino acid pathway were significantly reduced. Notably, MeHg treat-ment induced a significant reduction in tight junctions in the colon and hippocampal tissue. Furthermore, fecal microbiota analysis indicated that the diversity and composition characteristics were significantly altered by MeHg exposure. Mediation analysis showed that the gut microbiota mediated the effect of MeHg treatment on the neuro-transmitter expression profiles. The present findings shed light on the regulatory role of the gut microbiota in MeHg-disrupted neurotransmitter metabolic pathways and the potential impact of perinatal MeHg treatment on the "cross-talk" between the gut and brain.
Publication name |
Science Of The Total Environment, Volume 873, Article Number 162358, DOI 10.1016/j.scitotenv.2023.162358, Published MAY 15 2023 |
Author(s) |
Wang, Wenjuan; Chen, Fang; Zhang, Li; Wen, Fuli; Yu, Qing; Li, Ping; Zhang, Aihua |
Corresponding author(s) |
Li, Ping; Zhang, Aihua liping@mail.gyig.ac.cn; aihuagzykd@163.com Guizhou Med Univ, Sch Publ Hlth, Key Lab Environm Pollut Monitoring & Dis Control, Minist Educ, Guiyang 550025, Peoples R China Li, Ping liping@mail.gyig.ac.cn Inst Geochem, Chinese Acad Sci, State Key Lab Environm Geochem, Guiyang 550081, Peoples R China |
Author(s) from IGCAS |
Li, Ping | View here for the details
|
|
|