Tropical forest contributes to > 50% of global litterfall mercury (Hg) inputs and surface soil Hg storage, while with limited understanding of Hg biogeochemical processes. In this study, we displayed the 5-m resolution of Hg spatial distribution in three 1-ha tropical forest plots across the latitudinal gradient in Southwest China, and determined Hg isotopic signatures to understand factors driving Hg spatial distribution and sequestration processes. Our results show that tropical forest at the lowest latitude has the highest litterfall Hg input (74.95 versus 34.14-56.59 mu g m(-2) yr(-1) at higher latitude plots), but the smallest surface soil Hg concentration (2-3 times smaller than at higher latitude sites). Hg isotopic evidence indicates that the decreasing climate mediated microbial Hg reduction in forest floor leads to the increasing Hg accumulation along the latitudinal gradient in three tropical forests. The terrain induced indirect effects by influencing litterfall Hg inputs, soil organic matters distribution and interplays between surface and deep soils drive the heterogeneity of surface soil Hg distribution within each sampling plot. Our results highlight though the elevated litterfall Hg inputs, the distinct post-depositional reductions induced Hg loss would remarkedly decrease atmospheric Hg net sink in tropical forest.
Publication name |
Journal Of Hazardous Materials, Volume 429, Article Number 128295, DOI 10.1016/j.jhazmat.2022.128295, Published MAY 5 2022, Early Access JAN 2022 |
Author(s) |
Xia, Shangwen; Yuan, Wei; Lin, Luxiang; Yang, Xiaodong; Feng, Xinbin; Li, Xianming; Liu, Xu; Chen, Peijia; Zeng, Shufang; Wang, Dingyong; Su, Qizhao; Wang, Xun |
Corresponding author(s) |
Yang, Xiaodong yangxd@xtbg.ac.cn Chinese Acad Sci, CAS Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Mengla 666300, Yunnan, Peoples R China
Wang, Xun wangxun@mail.gyig.ac.cn Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550081, Peoples R China |
Author(s) from IGCAS |
Wang, Xun; Yuan, Wei; Feng, Xinbin | View here for the details
|
|
|