Home | Contact Us | Sitemap | 中文 | CAS | Director's Email
 
Location:Home > Papers > Recent Papers
The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants TEXT SIZE: A A A
Arsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg(-1)) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.
 

Publication name

 ENVIRONMENTAL GEOCHEMISTRY AND HEALTH DOI: 10.1007/s10653-021-00902-5 Early access icon] Early Access: APR 2021

Author(s)

 Natasha; Bibi, Irshad; Hussain, Khalid; Amen, Rabia; Ul Hasan, Israr Masood; Shahid, Muhammad; Bashir, Safdar; Niazi, Nabeel Khan; Mehmood, Tariq; Asghar, Hafiz Naeem; Nawaz, Muhammad Farrakh; Hussain, Muhammad Mahroz; Ali, Waqar

Corresponding author(s) 

 Bibi, Irshad; Niazi, Nabeel Khan
 irshad.niazi81@gmail.com; irshad.niazi@uaf.edu.pk  
 Univ Agr Faisalabad, Inst Soil & Environm Sci, Faisalabad 38040, Pakistan.

Author(s) from IGCAS   Ali, Waqar

View here for the details 

Copyright © Institute Of Geochemistry, Chinese Academy of Sciences All Rights Reserved.
Address: 99 West Lincheng Road, Guanshanhu District, Guiyang, Guizhou Province 550081, P.R.China
Tel: +86-851-85895239 Fax: +86-851-85895239 Email: web_en@mail.gyig.ac.cn