Many metal deposits were formed by carbonic fluids (rich in CO2) as indicated by fluid inclusions in minerals, but the precise role of CO2 in metal mineralization remains unclear. The main components in fluid inclusions, i.e. H2O and CO2, correspond to the decomposed products of organic acids, which lead us to consider that in the mineralization process the organic acids transport and then discharge metals when they are stable and unstable, respectively. Here we show that the thermal stability of copper acetate solution at 15-350 degrees C (0.1-830MPa) provides insight as to the role of organic acids in metal transport. Results show that the copper acetate solution is stable at high P-T conditions under low geothermal gradient of <19<degrees>C/km, with an isochore of P=1.89T+128.58, verifying the possibility of copper transportation as acetate solution. Increasing geothermal gradient leads to thermal dissociation of copper acetate in the way of 4Cu(CH3 COO)(2) + 2H(2)O = 4Cu + 2CO(2) + 7CH(3)COOH. The experimental results and inferences in this contribution agree well with the frequently observed fluid inclusions and wall-rock alterations of carbonate, sericite and quartz in hydrothermal deposits, and provide a new dimension in the understanding of the role of CO2 during mineralization.
Publication name |
SCIENTIFIC REPORTS Volume: 10 Issue: 1 Article Number: 5387 DOI: 10.1038/s41598-020-62250-1 Published: MAR 25 2020 |
Author(s) |
Ni, Zhiyong; Chen, Yanjing; Zheng, Haifei; Li, Nuo; Li, Heping |
Corresponding author(s) |
CHEN Yanjing yjchen@pku.edu.cn -Peking Univ, Key Lab Orogen & Crustal Evolut, Beijing 100871, Peoples R China -Chinese Acad Sci, Xinjiang Res Ctr Mineral Resources, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China |
Author(s) from IGCAS |
LI Heping | View here for the details
|
|
|