Home | Contact Us | Sitemap | 中文 | CAS | Director's Email
 
Location:Home > Papers > Recent Papers
Texture and composition of magnetite in the Duotoushan deposit, NW China: implications for ore genesis of Fe-Cu deposits TEXT SIZE: A A A
The Duotoushan deposit is an important Fe-Cu deposit in the Aqishan-Yamansu metallogenic belt of eastern Tianshan, NW China. Magnetite occurs in two main habits which are common in many Fe-Cu deposits, i.e. platy (T-D1 Mag) and granular magnetite (T-D2 Mag) have been identified at Duotoushan. Platy magnetite shows two different zones (bright and dark) based on the observations by scanning electron microscopy. The bright part (T-D1-L) is the main part of T-D1 magnetite and lacks inclusions. The dark part (T-D1-D) is very porous and has abundant tiny silicate inclusions. Granular magnetite is usually anhedral with obvious oscillatory zoning in back-scattered electron images. In general, the dark zones of magnetite are characterised by greater Si, Ca, Al and lesser Fe contents than the bright zones. In situ X-ray diffraction (XRD) analysis shows that the lattice parameter of T-D1 magnetite is approximately equal to that of standard magnetite and slightly higher than that of T-D2 magnetite, indicating that some cations with ionic radii smaller than those of Fe2+ or Fe3+ entered the magnetite lattice by simple or coupled substitution mechanisms in T-D2 magnetite.

The results in the present study show that the effects of temperature and on platy magnetite are very limited and the changing fluid composition might be the major controlling factor for the formation of Duotoushan platy magnetite. Although the possibility that mushketovite transformed from hematite cannot be excluded entirely, evidence from in situ XRD data, pore-volume ratio calculation and the growth habit of intergrown minerals indicates that platy magnetite (T-D1) coexisting with amphibole was more likely to have been precipitated originally from hydrothermal fluid. This was then affected by changes in the fluid composition which consequently led to dissolution of primary magnetite (T-D1-L) and re-precipitation of T-D1-D magnetite (with abundant porosity and mineral inclusions). Meanwhile, granular magnetite (T-D2) with oscillatory zoning, and coexisting with epidote and quartz, was precipitated from fluid with periodic variation in temperature. These oscillatory zones are characterised by bands enriched in Si, Al and Ca alternating with bands depleted in these elements. The present investigation revealed a complex evolutionary process for magnetite formation in the Duotoushan deposit. The importance of combined investigation of texture and compositional characterisation of magnetite for study of the ore genesis and evolution of Fe-Cu deposits is highlighted.
 

Publication name

 MINERALOGICAL MAGAZINE Volume: 84 Issue: 3 Pages: 398-411 DOI: 10.1180/mgm.2020.29 Published: JUN 2020

Author(s)

 Hu, Xia; Chen, Huayong; Huang, Xiaowen; Zhang, Weifeng

Corresponding author(s) 

 CHEN Huayong
 huayongchen@gig.ac.cn  
 Chinese Acad Sci, Guangzhou Inst Geochem, Key Lab Mineral & Metallogeny, Guangzhou 510640, Peoples R China. 
 Guangdong Prov Key Lab Mineral Phys & Mat, Guangzhou 510640, Peoples R China.

Author(s) from IGCAS   HUANG Xiaowen

View here for the details 

Copyright © Institute Of Geochemistry, Chinese Academy of Sciences All Rights Reserved.
Address: 99 West Lincheng Road, Guanshanhu District, Guiyang, Guizhou Province 550081, P.R.China
Tel: +86-851-85895239 Fax: +86-851-85895239 Email: web_en@mail.gyig.ac.cn