Home | Contact Us | Sitemap | 中文 | CAS | Director's Email
Location:Home > Papers > Recent Papers
Model-Based Analysis of Reactive Transport Processes Governing Fluoride and Phosphate Release and Attenuation during Managed Aquifer Recharge TEXT SIZE: A A A
In water-scarce areas, the reclamation of wastewater through advanced water treatment and subsequent reinjection into depleted aquifers is an increasingly attractive water management option. However, such injection can trigger a range of water-sediment interactions which need to be well understood and quantified to ensure sustainable operations. In this study, reactive transport modeling was used to analyze and quantify the interacting hydrogeochemical processes controlling the mobilization of fluoride and phosphate during injection of highly treated recycled water into a siliciclastic aquifer. The reactive transport model explained the field-observed fluoride and phosphate transport behavior as a result of the incongruent dissolution of carbonate-rich fluorapatite where (i) a rapid proton exchange reaction primarily released fluoride and calcium, and (ii) equilibrium with a mineral-water interface layer of hydrated dibasic calcium phosphate released phosphate. The modeling results illustrated that net exchange of calcium on cation exchange sites in the sediments postbreakthrough of the injectant was responsible for incongruent mineral dissolution and the associated fluoride and phosphate release. Accordingly, amending calcium chloride into the injectant could potentially reduce fluoride and phosphate mobilization at the study site. Insights from this study are broadly applicable to understanding and preventing geogenic fluoride mobilization from fluoride-bearing apatite minerals in many other aquifers worldwide.

Publication name

 ENVIRONMENTAL SCIENCE & TECHNOLOGY Volume: 54 Issue: 5 Pages: 2800-2811 DOI: 10.1021/acs.est.9b06972 Published: MAR 3 2020


 Schafer, David; Sun, Jing; Jamieson, James; Siade, Adam J.; Atteia, Olivier; Prommer, Henning

Corresponding author(s) 

 SUN Jing 1,2,3; Prommer, Henning 2,3,4 
 sunjing@mail.gyig.ac.cn; henning.prommer@csiro.au
 1. Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550081, Peoples R China.
 2. Univ Western Australia, Sch Earth Sci, Perth, WA 6009, Australia. 
 3. CSIRO Land & Water, Wembley, WA 6913, Australia.
 4. NCGRT, Adelaide, SA 5001, Australia.

View here for the details 

Copyright © 2020 Institute Of Geochemistry, Chinese Academy of Sciences All Rights Reserved.
Address: 99 West Lincheng Road, Guanshanhu District, Guiyang, Guizhou Province 550081, P.R.China
Tel: +86-851-85895239 Fax: +86-851-85895239 Email: web_en@mail.gyig.ac.cn