Home | Contact Us | Sitemap | 中文 | CAS | Director's Email
 
Location:Home > Papers > Recent Papers
Sources and dry deposition of carbonaceous aerosols over the coastal East China Sea: Implications for anthropogenic pollutant pathways and deposition TEXT SIZE: A A A
75 paired TSP and PM2.5 samples were collected over four seasons on Huaniao Island (HNI), an island that lies downwind of continental pollutants emitted from mainland China to the East China Sea (ECS). These samples were analyzed for organic carbon (OC) and elemental carbon (EC), with a special focus on char-EC (char) and soot-EC (soot), to understand their sources, and the scale and extent of pollution and dry deposition over the coastal ECS. The results showed that char concentrations in PM2.5 and TSP averaged from 0.13 to 1.01 and 0.31-1.44 mu g m(-3); while for soot, they were from 0.03 to 0.21 and 0.16-0.56 mu g m(-3), respectively. 69.0% of the char and 36.4% of the soot were present in PM2.5. The char showed apparent seasonal variations, with highest concentrations in winter and lowest in summer; while soot displayed maximum concentrations in fall and minimum in summer. The char/soot ratios in PM2.5 averaged from 3.29 to 17.22; while for TSP, they were from 1.20 to 7.07. Both of the ratios in PM2.5 and TSP were highest in winter and lowest in fall. Comparisons of seasonal variations in OC/EC and char/soot ratios confirmed that char/soot may be a more effective indicator of carbonaceous aerosol source identification than OC/EC. Annual average atmospheric dry deposition fluxes of OC and EC into ECS were estimated to be 229 and 107 mu g m(-2) d(-1), respectively, and their deposition fluxes significantly increased during episodes. It was estimated that the loadings of OC + EC and EC accounted for 1.3% and 4.1% of the total organic carbon and EC in ECS surface sediments, respectively, implying a relatively small contribution of OC and EC dry deposition to organic carbon burial. This finding also indicates a possibly more important contribution of wet deposition to organic carbon burial in sediments of ECS, and this factor should be considered for future study. (C) 2018 Elsevier Ltd. All rights reserved.
 

Publication name

 ENVIRONMENTAL POLLUTION, 245 771-779; 10.1016/j.envpol.2018.11.059 FEB 2019

Author(s)

 Wang, Fengwen; Feng, Ting; Guo, Zhigang; Li, Yuanyuan; Lin, Tian; Rose, Neil L.

Corresponding author(s) 

 WANG Fengwen 
 fengwenwang@cqu.edu.cn  
 Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400030, Peoples R China
 Fudan Univ, Shanghai Key Lab Atmospher Particle Pollut & Prev, Dept Environm Sci & Engn, Shanghai 200438, Peoples R China
 Chongqing Univ, Coll Resources & Environm Sci, Dept Environm Sci, Chongqing 400030, Peoples R China

Author(s) from IGCAS   LIN Tian

View here for the details 

Copyright © Institute Of Geochemistry, Chinese Academy of Sciences All Rights Reserved.
Address: 99 West Lincheng Road, Guanshanhu District, Guiyang, Guizhou Province 550081, P.R.China
Tel: +86-851-85895239 Fax: +86-851-85895239 Email: web_en@mail.gyig.ac.cn