Home | Contact Us | Sitemap | 中文 | CAS | Director's Email
 
Location:Home > Papers > Recent Papers
Gallium isotope fractionation during Ga adsorption on calcite and goethite TEXT SIZE: A A A
Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 degrees C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation Delta Ga-71(solid-solution) up to -1.27% and -0.89% for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 angstrom in Ga(OH)(4)(-) to 6 and 1.94 angstrom in the >Ca-O-GaOH(OH2)(4)(+) surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa (OH)(2)(0) surface complexes (Ga-O distances of 1.96-1.98 angstrom) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)(4)(-) is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its geochemical analog aluminum. (C) 2017 Elsevier Ltd. All rights reserved.
 

Publication name

 GEOCHIMICA ET COSMOCHIMICA ACTA, 223 350-363; 10.1016/j.gca.2017.12.008 FEB 15 2018

Author(s)

 Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Zuccolini, Marino Vetuschi; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

Corresponding author(s) 

 CHEN Jiubin  
 chenjiubin@vip.gyig.ac.cn  
 Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550081, Guizhou, Peoples R China. 

View here for the details 

Copyright © Institute Of Geochemistry, Chinese Academy of Sciences All Rights Reserved.
Address: 99 West Lincheng Road, Guanshanhu District, Guiyang, Guizhou Province 550081, P.R.China
Tel: +86-851-85895239 Fax: +86-851-85895239 Email: web_en@mail.gyig.ac.cn