People
Faculty and Staff
CAS Members
Location: Home >> People
Details
Name  
DAI Lidong
Title  
  Professor
Education  
  Ph D
Position  
  No
Phone  
  0086-0851-85891424
Research Division  
  Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences
Fax  
  0086-0851-85891749
Email  
  dailidong@vip.gyig.ac.cn

Education and Work Experience:

1997.092001.07 China University of Geosciences (Wuhan), Bachelor student

2001.092006.05 Institute of Geochemistry, Chinese Academy of Sciences, PhD Postgraduate student

2006.052008.01 Institute of Geochemistry, Chinese Academy of Sciences, Assistant Professor

2008.022009.02 Department of Geology and Geophysics, Yale University, Research Scientist

2009.032010.09 Institute of Geochemistry, Chinese Academy of Sciences, Associate Professor

2010.102012.11 Department of Earth and Planetary Science, Tokyo institute of Technology, Postdoctoral

Fellows of Japan Society for the Promotion of Science

2012.12-2013.11 Department of Geology and Geophysics, Yale University, Visiting Fellows

2013.12Till now Institute of Geochemistry, Chinese Academy of Sciences, Professor

2016.11—2017.02 Mineral Physics Institute, New York State University (Stony Brook), Visiting Professor


Research Interests:

1 XRD in synchrotron and elastic sound velocity measurement of Brillouin scattering method;
2 Electrical property of mineral and petrology in the deep Earth using multi-anvil press and DAC under controlled thermodynamic condition;
3 Material of Physics and Chemistry;
4 Physics and chemistry of Earth interior

Other Positions:

Honors:

1 The membership of Youth Innovation Promotion Association of CAS (2013);
2 The excellent supervisor award of institute of Geochemistry, CAS (2013);
3 The Gold Hammer award for the 13th Geological Science and Technique Award for Young Geologists (2011);
4 JSPS fellows award from Japan Society for the promotion of Science (2010);
5 President award of Chinese Academy of Sciences (2006);
6 Excellent graduate of Chinese Academy of Sciences (2006)

Selected Publications:

First author and Corresponding author:

74) Dai Lidong*, Hu Haiying*, He Yu and Sun Wenqing. "Some New Progress in the Experimental Measurements on Electrical Property of Main Minerals in the Upper Mantle at High Temperatures and High Pressures" In Mineralogy, edited by Milo? René. London: IntechOpen, 2022, in press, doi: https://doi.org/10.5772/intechopen.101876.

73) Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu, Li Chuang and He Yu. Pressure-induced structural phase transition and metallization in CrCl3 under different hydrostatic environments up to 50.0 GPa. Inorganic Chemistry, 2022, 61: 4852?4864.

72) Hong Meiling, Dai Lidong*, Hu Haiying*, Yang Linfei and Zhang Xinyu. Pressure-induced structural phase transitions in natural kaolinite investigated by Raman spectroscopy and electrical conductivity. American Mineralogist, 2022, 107: 385–394.

71) Hu Haiying, Dai Lidong*, Sun Wenqing, Wang Mengqi and Jing Chengxin. Constraints on fluids in the continental crust from the laboratory-based electrical conductivity of plagioclase. Gondwana Research, 2022, 107: 1?12.

70) Hu Haiying*, Dai Lidong*, Sun Wenqing, Zhuang Yukai, Liu Kaixiang, Yang Linfei, Pu Chang, Hong Meiling, Wang Mengqi, Hu Ziming, Jing Chenxin, Li Chuang, Yin Chuanyu and Sivaprakash Paramasivam. Some remarks on the electrical conductivity of hydrous silicate minerals in the Earth crust, upper mantle and subduction zone at high temperatures and high pressures. Minerals, 2022, 12, 161, doi: https://doi.org/10.3390/min12020161.

69) Sun Wenqing, Dai Lidong*, Hu Haiying*, Wang Mengqi, Hu Ziming and Jing Chenxin. Experimental research on electrical conductivity of the olivine-ilmenite system at high temperatures and high pressures. Frontiers in Earth Science, 10: 861003, doi: https://doi.org/10.3389/feart.2022.861003.

68) Wang Mengqi, Dai Lidong*, Hu Haiying*, Sun Wenqing, Hu Ziming and Jing Chenxin. Effect of different mineralogical proportions on the electrical conductivity of dry hot-pressed sintering gabbro at high temperatures and pressures. Minerals, 2022, 12, 336, doi: https://doi.org/10.3390/min12030336.

67) Zhang Xinyu, Dai Lidong*, Hu Haiying*, Hong Meiling and Li Chuang. Pressure-induced coupled structural-electronic transition in SnS2 under different hydrostatic environments up to 39.7 GPa. RSC Advances, 2022, 12, 2454–2461.

66) Hong Meiling, Dai Lidong*, Hu Haiying* and Zhang Xinyu. Pressure-induced structural phase transition and metallization in Ga2Se3 up to 40.2 GPa under non-hydrostatic and hydrostatic environments. Crystals, 2021, 11, 746, doi: https://doi.org/10.3390/cryst11070746.

65) Sun Wenqing, Jiang Jianjun, Dai Lidong*, Hu Haiying, Wang Mengqi, Qi Yuqing and Li Heping. Electrical properties of dry polycrystalline olivine mixed with various chromite contents: Implications for the high-conductivity anomalies in subduction zones. Geoscience Frontiers, 2021, 12, 101178, doi: https://doi.org/10.1016/j.gsf.2021.101178.

64) Sun Wenqing, Dai Lidong*, Hu Haiying*, Jiang Jianjun, Wang Mengqi, Hu Ziming and Jing Chenxin. Influence of saline fluids on the electrical conductivity of olivine aggregates at high temperature and high pressure and its geological implications. Frontiers in Earth Science, 2021, 9, 749896, doi: 10.3389/feart.2021.749896.

63) Yang Linfei, Jiang Jianjun, Dai Lidong*, Hu Haiying*, Hong Meiling, Zhang Xinyu, Li Heping and Liu Pengfei. High-pressure structural phase transition and metallization in Ga2S3 under non-hydrostatic and hydrostatic conditions up to 36.4 GPa. Journal of Materials Chemistry C, 2021, 9: 2912–2918.

62) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Hong Meiling, Zhang Xinyu and Liu Pengfei. High-pressure investigations on the isostructural phase transition and metallization in realgar with diamond anvil cells. Geoscience Frontiers, 2021, 12: 1031–1037.

61) Zhang Xinyu, Dai Lidong*, Hu Haiying* and Hong Meiling. Pressure-induced metallic phase transition in gallium arsenide up to 24.3 GPa under hydrostatic conditions. Modern Physics Letters B, 2021, 35, 2150460, doi: 10.1142/s0217984921504601.

60) Dai Lidong* and Karato Shun-ichiro. Electrical conductivity of Ti-bearing hydrous olivine aggregates at high temperature and high pressure. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020309, doi: https://doi.org/10.1029/2020JB020309.

59) Dai Lidong, Hu Haiying*, Jiang Jianjun, Sun Wenqing, Li Heping, Wang Mengqi, Vallianatos Filippos and Saltas Vassilios*. An overview of the experimental studies on the electrical conductivity of major minerals in the upper mantle and transition zone. Materials 2020, 13, 408, doi: 10.3390/ma13020408.

58) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Wang Mengqi. Electrical conductivity of clinopyroxene-NaCl-H2O system at high temperatures and pressures: Implications for high-conductivity anomalies in the deep crust and subduction zone. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019093, doi: https://doi.org/10.1029/2019JB019093.

57) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Hong Meiling and Zhang Xinyu. The phase transition and dehydration in epsomite under high temperature and high pressure. Crystals, 2020, 10, 75, doi: 10.3390/cryst10020075.

56) Dai Lidong*, Pu Chang, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Hong Meiling. Characterization of metallization and amorphization for GaP under different hydrostatic environments in diamond anvil cell up to 40.0 GPa. Review of Scientific Instruments, 2019, 90, 066103, doi: 10.1063/1.5093949.

55) Dai Lidong*, Hu Haiying*, Sun Wenqing, Li Heping, Liu Changcai and Wang Mengqi. Influence of high conductive magnetite impurity on the electrical conductivity of dry olivine aggregates at high temperature and high pressure. Minerals, 2019, 9, 44, doi: 10.3390/min9010044.

54) Hong Meiling, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Pu Chang. Structural phase transition and metallization of nanocrystalline rutile investigated by high-pressure Raman spectroscopy and electrical conductivity. Minerals, 2019, 9, 441, doi: 10.3390/min9070441.

53) Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Yang Linfei, Pu Chang and Hong Meiling. Evidences for phase transition and metallization in β-In2S3 at high pressure. Chemical Physics, 2019, 524: 63–69.

52) Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Yang Linfei, Pu Chang and Hong Meiling. Phase transition and metallization of orpiment by Raman spectroscopy, electrical conductivity and theoretical calculation under high pressure. Materials, 2019, 12, 784, doi: 10.3390/ma12050784.

51) Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Yang Linfei, Pu Chang and Hong Meiling. Pressure-induced phase transitions for goethite investigated by Raman spectroscopy and electrical conductivity. High Pressure Research, 2019, 39: 106–116.

50) Pu Chang, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Hong Meiling. Pressure-induced phase transitions of ZnSe under different pressure environments. AIP Advances, 2019, 9, 025004, doi: https://doi.org/10.1063/1.5082209.

49) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying and Liu Changcai. Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications. Journal of Mineralogical and Petrological Sciences, 2019, 114: 87–98.

48) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Liu Changcai. Experimental study on the electrical properties of carbonaceous slate: A special natural rock with unusually high conductivity at high temperatures and pressures. High Temperatures-High Pressures, 2019, 48: 455–467.

47) Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Liu Changcai and Wang Mengqi. Effect of temperature, pressure and chemical compositions on the electrical conductivity of schist: Implications for electrical structures under the Tibetan plateau. Materials, 2019, 12, 961, doi: 10.3390/ma12060961.

46) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Pu Chang, Hong Meiling and Liu Pengfei. Characterization of the pressure-induced phase transition of metallization for MoTe2 under different hydrostatic environments. AIP Advances, 2019, 9, 065104, doi: 10.1063/1.5097428

45) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Pu Chang, Hong Meiling and Liu Pengfei. Pressure-induced metallization in MoSe2 under different pressure conditions. RSC Advances, 2019, 9: 5794?5803.

44) Dai Lidong*, Liu K X, Li H P, Wu L, Hu H Y, Zhuang Y K, Yang L F, Pu C and Liu P F. Pressure-induced irreversible metallization with phase transitions of Sb2S3. Physical Review B, 2018, 97, 024103, doi: 10.1103/PhysRevB.97.024103.

43) Dai Lidong*, Sun W Q, Li H P, Hu H Y, Wu L and Jiang J J. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures. Solid Earth, 2018, 9: 233–245.

42) Dai Lidong*, Hu H Y, Li H P, Sun W Q and Jiang J J. Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications for the mechanism of conduction. Chinese Physics B, 2018, 27, 028703, doi: 10.1088/1674-1056/27/2/028703.

41) Hu Haiying, Dai Lidong*, Li H P, Sun W Q and Li B S. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole and its implications for the high conductivity anomalies in subduction zones and continental crust. Earth and Planetary Science Letters, 2018, 498: 27–37.

40) Pu Chang, Dai Lidong*, Li H P, Hu H, Zhuang Y K, Liu K X, Yang L F and Hong M L. High–pressure electrical conductivity and Raman spectroscopic study of chalcanthite. Spectroscopy Letters, 2018, 51: 531–539.

39) Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Liu Kaixiang, Pu Chang and Hong Meiling. Pressure-induced structural phase transition and dehydration for gypsum investigated by Raman spectroscopy and electrical conductivity. Chemical Physics Letters, 2018, 706: 151–157.

38) Zhuang Yukai, Dai Lidong*, Li H P, Hu H Y, Liu K X, Yang L F, Pu C, Hong M L and Liu P F. Deviatoric stresses promoted metallization in rhenium disulfide. Journal of Physics D: Applied Physics, 2018, Journal of Physics D: Applied Physics, 51, 165101, doi: https://doi.org/10.1088/1361-6463/aab5a7.

37) Zhuang Yukai, Dai Lidong*, Li H P, Hu H Y, Liu K X, Yang L F, Pu C and Hong M L. Pressure induced reversible metallization and phase transition in Zinc Telluride. Modern Physics Letters B, 2018, 34, 1850342, doi: 10.1142/S0217984918503426.

36) Liu Kaixiang, Dai Lidong*, Li H P, Hu H Y, Wu L, Zhuang Y K, Pu C and Yang L F. Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure. Physics and Chemistry of Minerals, 2018, 45: 85–92.

35) Dai Lidong, Zhuang Y K, Li H P, Wu L, Hu H Y, Liu K X, Yang L F and Pu C. Pressure-induced irreversible amorphization and metallization with a structural phase transition in arsenic telluride. Journal of Materials Chemistry C, 2017, 5: 12157–12162.

34) Hu Haiying, Dai Lidong*, Li H P, Hui K S and Sun W Q. Influence of dehydration on the electrical conductivity of epidote and implications for high conductivity anomalies in subduction zones. Journal of Geophysical Research: Solid Earth, 2017, 122: 2751–2762.

33) Zhuang Yukai, Dai Lidong*, Wu L, Li H P, Hu H Y, Liu K X, Yang L F and Pu C. Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide. Applied Physics Letters, 2017, 110, 122103, doi: 10.1063/1.4979143.

32) Sun Wenqing, Dai Lidong*, Li H P, Hu H Y, Wu L and Jiang J J. The electrical conductivity of mudstone before and after dehydration at high temperatures and pressures. American Mineralogist, 2017, 102: 2450–2456.

31) Sun Wenqing, Dai Lidong*, Li H P, Hu H Y, Jiang J J and Hui K S. Effect of dehydration on the electrical conductivity of phyllite at high temperatures and pressures. Mineralogy and Petrology, 2017, 111: 853–863.

30) Wu Lei, Dai Lidong*, Li H P, Hu H Y, Zhuang Y K and Liu K X. Anomalous phase transition of Bi-doped Zn2GeO4 investigated by electrical conductivity and Raman spectroscopy under high pressure. Journal of Applied Physics, 2017, 121, 125901, doi: 10.1063/1.4979311.

29) Hui Keshi, Dai Lidong*, Li H P, Hu H Y, Jiang J J, Sun W Q and Zhang H. Experimental study on the electrical conductivity of pyroxene andesite at high temperature and high pressure. Pure and Applied Geophysics, 2017, 174: 1033-1041.

28) Dai Lidong, Hu H Y, Li H P, Wu L, Hui K S, Jiang J J and Sun W Q. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications. Geochemistry, Geophysics, Geosystems, 2016, 17: 2394-2407.

27) Dai Lidong, Wu L, Li H P, Hu H Y, Zhuang Y K and Liu K X. Evidence of the pressure-induced conductivity switching of yttrium-doped SrTiO3. Journal of Physics: Condensed Matter, 2016, 28, 475501, doi: 10.1088/0953-8984/28/47/475501.

26) Dai Lidong, Wu L, Li H P, Hu H Y, Zhuang Y K & Liu K X. Pressure-induced phase-transition and improvement of the micro dielectric properties in yttrium-doped SrZrO3. Europhysics Letters, 2016, 114, 56003, doi: 10.1209/0295-5075/114/56003.

25) Wu Lei, Dai Lidong*, Li H P, Zhuang Y K, Liu K X. Pressure-induced improvement of grain boundary properties in Y-doped BaZrO3. Journal of Physics D: Applied Physics, 2016, 49, 345102, doi: 10.1088/0022-3727/49/34/345102.

24) Dai Lidong, Hu H Y, Li H P, Hui K S, Jiang J J, Li J and Sun W Q. Electrical conductivity of gabbro: the effects of temperature, pressure and oxygen fugacity. European Journal of Mineralogy, 2015, 27: 215-224.

23) Dai Lidong, Jiang J J, Li H P, Hu H Y and Hui K S. Electrical conductivity of hydrous natural basalt at high temperatures and high pressures. Journal of Applied Geophysics, 2015, 112: 290-297.

22) Hui Keshi, Zhang H, Li H P, Dai Lidong*, Hu H Y, Jiang J J and Sun W Q. Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: evidence of grain boundary transport. Solid Earth, 2015, 6: 1037-1043.

21) Dai Lidong and Karato S. Reply to comment on “High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine” by Dai and Karato [Earth Planet. Sci. Lett. 408 (2014) 79–86]. Earth and Planetary Science Letters, 2015, 427: 300-302.

20) Dai Lidong and Karato S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth and Planetary Science Letters, 2014, 408: 79-86.

19) Dai Lidong, Hu H Y, Li H P, Jiang J J and Hui K S. Effects of temperature, pressure and chemical composition on the electrical conductivity of granite and its geophysical implications. American Mineralogist, 2014, 99: 1420-1428.

18) Dai Lidong and Karato S. Influence of FeO and H on the electrical conductivity of olivine. Physics of the Earth and Planetary Interiors, 2014, 237: 73-79.

17) Dai Lidong and Karato S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Physics of the Earth and Planetary Interiors, 2014, 232: 51-56.

16) Dai Lidong and Karato S. Influence of oxygen fugacity on the electrical conductivity of olivine under hydrous conditions: Implications for the mechanism of conduction. Physics of the Earth and Planetary Interiors, 2014, 232: 57-60.

15) Dai Lidong, Li H P, Hu H Y, Jiang J J, Hui K S and Shan S M. Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics, 2013, 608: 1086-1093.

14) Dai Lidong, Kudo Y, Hirose K, Murakami M, Asahara Y, Ozawa H, Ohishi Y and Hirao N. Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases 73 GPa determined by Brillouin scattering method. Physics and Chemistry of Minerals, 2013, 40: 195-201.

13) Dai Lidong, Li H P, Hu H Y, Shan S M, Jiang J J and Hui K S. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contributions to Mineralogy and Petrology, 2012, 163 (4): 689-700.

12) Dai Lidong, Li H P, Hu H Y and Shan S M. In-situ control of oxygen fugacity for laboratory measurements of electrical conductivity of minerals and rocks in multi-anvil press. Chinese Physics B, 2011, 20: 049101, doi: 10.1088/1674-1056/20/4/049101.

11) Dai Lidong, Li H P, Li C H, Hu H Y and Shan S M. The Electrical conductivity of dry polycrystalline olivine compacts at high temperatures and pressures. Mineralogical Magazine, 2010, 74 (5): 849-857.

10) Dai Lidong and Karato S. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth and Planetary Science Letters, 2009, 287: 277-283.

9) Dai Lidong and Karato S. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Physics of the Earth and Planetary Interiors, 2009, 176: 83-88.

8) Dai Lidong and Karato S. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proceedings of the Japan Academy (Series B), 2009, 85: 466-475.

7) Dai Lidong, Li H P, Hu H Y and Shan S M. Novel technique to control oxygen fugacity during high-pressure measurements of grain boundary conductivities of rocks. Review of Scientific Instruments, 2009, 80: 033903, doi: 10.1063/1.3097882.

6) Dai Lidong, Li H P, Hu H Y and Shan S M. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. Journal of Geophysical Research-Solid Earth, 2008, 113: B12211, doi: 10.1029/2008JB005820.

5) Dai Lidong, Li H P, Deng H M, Liu C Q, Su G L, Shan S M, Zhang L and Wang R P. In situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure. Journal of Physics and Chemistry of Solids, 2008, 69 (1): 101-110.

4) Dai Lidong, Li H P, Liu C Q, Su G L and Shan S M. Experimental measurement on the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities. High Pressure Research, 2006, 26 (3): 193-202.

3) Dai Lidong, Li H P, Liu C Q, Cui T D, Shan S M, Yang C J, Liu Q Y and Deng H M. Experimental measurement on the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities. Progress in Natural Science, 2006, 16 (4): 387-393.

2) Dai Lidong, Li H P, Liu C Q, Shan S M, Cui T D and Su G L. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities. Acta Geological Sinica-English Edition, 2005, 79 (6): 803-809.

1) Dai Lidong, Li H P, Liu C Q, Su G L and Cui T D. In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities of diopside at high temperature and high pressure. Acta Petrological Sinica, 2005, 21 (6): 1737-1742.

Other author:

11) He Yu*, Dai Lidong, Kim Duck Young, Li Heping and Karato Shun-ichiro. Thermal ionization of hydrogen in hydrous olivine with enhanced and anisotropic conductivity. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022939, doi: https://doi.org/10.1029/2021JB022939.

10) Gabriel D. Gwanmesia, Matthew L. Whitaker, Dai Lidong, Alwin James, Haiyan Chen, Richard S. Triplett and Nao Cai. The elastic properties of β-Mg2SiO4 containing 0.73 wt.% of H2O to 10 GPa and 600 K by ultrasonic interferometry with synchrotron X-radiation. Minerals, 2020, 10, 209, doi: 10.3390/min10030209.

9) Liang Wen, Li Z M, Yin Y, Li R, Chen L, He Y, Dong H N, Dai Lidong and Li H P. Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3). Physics and Chemistry of Minerals, 2018, 45: 423–434.

8) Jiang Jianjun, Li H P, Dai Lidong, Hu H Y and Zhao C S. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa). AIP Advances, 2016, 6: 035214, doi: 10.1063/1.4944832.

7) Jiang Jianjun, Li H P, Dai Lidong, Hu H Y and Zhao C S. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physical Sinica, 2015, 64 (14): 149101.

6) Jiang Jianjun, Li H P, Dai Lidong, Hu H Y, Wang Y and Zhao C S. Review on application of optical scattering spectroscopy for elastic wave velocity study on materials in Earth’s interior. Spectroscopy and Spectral Analysis, 2015, 35 (9): 2588-2595.

5) Hu Haiying, Dai Lidong, Li H P, Hui K S and Li J. Temperature and pressure dependence of electrical conductivity in synthetic anorthite. Solid State Ionics, 2015, 276: 136-141.

4) Hu Haiying, Dai Lidong, Li H P, Jiang J J and Hui K S. Electrical conductivity of K-feldspar at high temperature and high pressure. Mineralogy and Petrology, 2014, 108: 609-618.

3) Hu Haiying, Li H P, Dai Lidong, Shan S M and Zhu C M. Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Physics and Chemistry of Minerals, 2013, 40: 51-62.

2) Hu Haiying, Li H P, Dai Lidong, Shan S M and Zhu C M. Electrical conductivity of albite at high temperatures and high pressures. American Mineralogist, 2011, 96: 1821-1827.

 

1) Karato Shun-ichiro and Dai Lidong. Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Physics of the Earth and Planetary Interiors, 2009, 174: 19-21.


Grants:

NSF of China, Jan. 2018-Dec. 2021, Grant No. 41774099, PI;

Key Research Program of the Frontier Sciences, Chinese Academy of Sciences, Aug. 2016-Dec. 2020, Grant No. QYZDB-SSW-DQC009, PI;

NSF of China, Jan. 2015-Dec. 2018, Grant No. 41474078, PI;

Special Fund of Youth Innovation Promotion Association of CAS, Jan. 2013-Dec. 2016, PI;

NSF of China, Jan. 2012-Dec. 2015, Grant No. 41174079, PI;

Special Fund of Foreign Researcher from Postdoctoral Fellows of Japan Society for the Promotion of Science, Oct. 2010-Oct. 2012, PI;

Knowledge-Innovation Key Orientation Project of CAS (Youth Talent), Grant No. KZCX2-YWQN110, PI;

NSF of China, Jan. 2010-Dec. 2012, Grant No. 40974051, PI;

NSF of China, Jan. 2008-Dec. 2010, Grant No. 40704010, PI