
Vol:.(1234567890)

Acta Geochim (2025) 44:1014–1039

https://doi.org/10.1007/s11631-025-00800-y

                     ORIGINAL ARTICLE 

 Mineralogy, geochemistry, and stable isotopes 
in the reconstruction of the paleodepositional environment, 
provenance, and paleoclimate of Cretaceous mudstones, Koum 
Basin, Cameroon 

                                                                  Nowel   Yinkfu     Njamnsi   1,3      ·   George   Lemewihbwen     Ngiamte   2,3          ·   Cheo   Emmanuel     Suh   2,4      ·   Olivier   Anoh     Njoh   2      · 
  Daniel     Layton-Matthews   5      ·   Peir   K.     Pufahl   5      ·   Agatha     Dobosz   5     

 Received: 20 February 2025 / Revised: 22 May 2025 / Accepted: 4 June 2025   / Published online: 1 July 2025

©   The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of 

Springer Nature      2025  

                     Abstract     The Cretaceous Koum Basin is a rift-related 

half-graben in northern Cameroon, which constitutes a por-

tion of the Yola Arm of the Upper Benue Trough. This study 

presents the fi rst comprehensive dataset combining mineral-

ogical, bulk-rock geochemical, and stable C–H–O isotopic 

data for dark-gray, fi ne-grained mudstones from the basin, 

providing new insights into its sediment source, paleoenvi-

ronment, and geodynamic setting. The mudstones primar-

ily consist of phyllosilicates (~ 8.6%), feldspars (~ 30.5%), 

carbonates (~ 13.7%), and minor iron oxides (~ 2.7%), with 

vermiculite, illite, and kaolinite as the main clay minerals. 

The presence of analcime, ankerite, and dolomite suggests 

low-grade metamorphism and/or hydrothermal alteration. 

 Fe 2 O 3 /K 2 O (1.52–6.40) and  SiO 2 /Al 2 O 3  (2.97–4.68) ratios 

classify the mudstones as compositionally immature shales 

(ICV  ~  1.64) with low-moderate chemical weathering 

(CIA ~ 56.35; PIA ~ 59.74;  R 3+ /R 3+  +  R 2+  +  M +   ~ 0.51). 

Trace element ratios (Th/Sc  ~  1.70, Zr/Sc  ~  1.33, La/

Sc ~ 6.30, La/Th ~ 4.14) indicate an intermediate igneous 

provenance from a continental crustal source. Paleoenviron-

mental proxies suggest deposition in a dynamic basin envi-

ronment marked by fl uctuating redox  (C org /P: 0.21–178.34) 

and salinity (Sr/Ba: 0.34–3.25; N-values: 48–35.92) condi-

tions, ranging from oxic to anoxic and brackish to saline. 

Major element data  (SiO 2  vs.  Al 2 O 3  +  K 2 O +  Na 2 O) indicate 

a semi-arid regime, while Paleoclimatic indicators such as 

Sr/Cu (1.88–37.47) and C-values (0.12–0.93) suggests alter-

nating humid and arid conditions. Notably, stable isotope 

data, reported here for the fi rst time in the Koum Basin, 

reveal a predominantly terrestrial, fl uvial-deltaic  C 3  plant 

source for organic carbon ( δ  13 C − 25.2‰ to − 35.2‰) and 

complex fl uid-rock interactions involving meteoric and mag-

matic-metamorphic fl uids under a warm, equatorial climate 

( δ  18 O + 3.6‰ to + 24.9‰,  δ  2 H − 104‰ to − 50‰). The 

combined mineralogical, geochemical, and isotopic data 

point to deposition in a tectonically active continental arc 

setting, with contributions from ocean island arc and passive 

margin sources. 

   Keywords     Geochemistry    ·  C–H–O isotopes    ·  Sediment 

source    ·  Paleoenvironment    ·  Paleoclimates    ·  Koum basin  

       1  Introduction 

 The oil and gas industry is undergoing a signifi cant transfor-

mation, driven by a global shift toward sustainability and a 

move away from fossil fuels. Despite growing environmental 
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concerns and uncertainties surrounding the long-term avail-

ability of hydrocarbon reserves, oil remains a crucial eco-

nomic driver, particularly for developing nations (Graham 

and Ovadia  2019 ; Campbell and Heapes  2008 ; Höök et al. 

 2009 ; Di Muszio and Ovadia  2006 ; Ghasemian et al.  2020 ; 

Litvinenko  2020 ). This continued reliance on oil necessi-

tates the identifi cation of new hydrocarbon reserves to meet 

global energy demands, especially in data-scarce regions. 

Consequently, exploration eff orts are increasingly targeting 

complex geological settings and frontier basins as produc-

tion from mature fi elds declines (Lawson et al.  2018 ; Latham 

 2019 ). 

 Understanding past climatic and depositional environ-

ments is crucial for both hydrocarbon exploration and pre-

dicting future climate change. Paleoclimate research utilizes 

various proxies, including clay mineralogy (Ruff ell and Bat-

ten  1990 ; Hallam et al.  1991 ; Ruff ell and Garden  1997 ) and, 

importantly, stable isotope geochemistry, which has proven 

particularly valuable in reconstructing past environmental 

conditions and geochemical processes (McCrea 1950; Urey 

et al. 1951; Silverman and Epstein  1958 ; Boutton et al.  1993 ; 

Xie et al.  2000 ; Sauer et al.  2001 ; Dawson et al.  2004 ; Leng 

and Marshall  2004 ; Tiwari et al.  2015 ; Tabor and Myers 

 2015 ; Peng et al.  2024 ; Sofer  1991 ). 

 The Cretaceous Period, characterized by a greenhouse 

climate and various geological events (Tarduno et al.  1998 ; 

Kuypers et al.  1999 ; Cojan et al.  2000 ; Berner and Kothavala 

 2001 ; Bice and Norris  2002 ; Huber et al.  2002 ; Skelton et al. 

 2003 ; Bice et al.  2006 ), provides an excellent case study for 

investigating these relationships. Research on the paleodepo-

sitional and climatic conditions of Cretaceous rift basins 

is particularly relevant for understanding hydrocarbon for-

mation and informing future climate models (Lentini et al. 

 2010 ; Chaboureau et al.  2013 ). 

 Rift basins globally, including those in West Siberia, 

Africa, South America, China, and Southeast Asia, are 

known for their signifi cant hydrocarbon potential (Morley 

 1999 ; Harris et al.  2004 ). The West and Central African 

Rift System (WCARS) is a prime example. While its hydro-

carbon potential has long been recognized, development 

has been hampered by infrastructure limitations. Recent 

advancements, such as the construction of the Chad–Cam-

eroon pipeline, are now facilitating exploration and pro-

duction activities in this region (Fairhead  2009 ; Dou et al. 

 2023 ). 

 While the Benue Trough, a major basin within the 

WCARS, has been extensively studied, signifi cant hydro-

carbon discoveries have been limited. However, the recent 

discovery in the Kolmani River Field by the Nigerian 

National Petroleum Company marks a signifi cant mile-

stone. Other promising basins within the WCARS include 

the East Niger and Sudanese rift basins, as well as basins 

in northern Cameroon, such as Logone Birni, Garoua, 

Yaogoua, Babouri Figuil, and Koum (Petters and Ekweozor 

 1982 ; Nwachukwu  1985 ; Genik  1992 ; Bessong et al.  2018 ; 

Njamnsi et al.  2022a ,  b ). 

 The Koum basin, a Cretaceous rift basin in northern 

Cameroon, is a remnant of the Yola Arm of the Upper Benue 

Trough (Fig.  1 ). Located at the intersection of the Central 

African Rift System (CARS) and the West African Rift Sys-

tem (WARS), the basin has attracted considerable attention 

due to its exposed geological formations and potential for 

hydrocarbon resources. Numerous studies have investigated 

its structural, stratigraphic, and paleodepositional charac-

teristics (e.g., Congleton  1990 ; Nolla et al.  2015 ; Shandini 

et al.  2018 ; Bessong et al.  2018 ; Njamnsi et al.  2022a ,  b ; 

Agbor-Taku et al.  2023a ,  b ,  c ; Ngo Mandeng et al.  2024a ,  b ).         

 Recent studies have identifi ed organic-rich mudstones 

with signifi cant oil generation potential within the Koum 

basin (e.g., Njamnsi et  al.  2022b ; Ngo Mandeng et  al. 

 2024a ). These mudstones contain predominantly Type I-II 

kerogen, indicating oil-prone organic matter, along with 

some Type III kerogen associated with gas generation. The 

organic matter in these rocks is derived from a mixture of 

algal and terrestrial sources (Njamnsi et al.  2022a ,  b ; Ngo 

Mandeng et al.  2024a ,  b ). However, despite these advances, 

no study to date has provided a detailed, integrated min-

eralogical, whole-rock geochemical, and stable C–H–O 

isotopic characterization of the mudstones from the Koum 

Basin. This lack of comprehensive geochemical and isotopic 

data limits our understanding of the basin’s sediment prov-

enance, depositional environment, fl uid interactions, and 

tectonic evolution critical factors for assessing its petroleum 

potential. 

 This study addresses this gap by presenting the fi rst inte-

grated dataset of mineralogical, major-trace element geo-

chemistry, and stable C–H–O isotope compositions for the 

dark-gray Cretaceous mudstones of the Koum Basin. This 

combined approach provides novel insights into sediment 

provenance, paleoclimate variability, diagenetic processes, 

and the basin geodynamics. These fi ndings not only advance 

the geological understanding of the Koum Basin but also 

contribute to broader regional exploration models and the 

economic development of northern Cameroon. 

     2   Geological setting 

 The Koum basin, a 1200-km 2  intracontinental basin in 

northern Cameroon, is an extension of the Yola sub-basin 

within the Upper Benue Trough of Nigeria (Fig.  1 ; Brunet 

et al.  1990 ; Maurin et al.  1986 ; Schwoerer  1965 ). As part 

of the WCARS, the formation and geometry of the Koum 

basin are linked to tectonic activity during the Early Creta-

ceous, specifi cally strike-slip or extensional tectonics along 
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  Fig. 1       Map illustrating  a ,  b  the confi guration of the West and Central African Rift System (adapted from Genik  1993 ; Fairhead  2020 ),  c  the 

regional geologic setting of Cameroon, with the Koum basin indicated by the  red inset  (modifi ed from Mimba et al.  2018 ), and  d  the specifi c 

geologic formations within the Koum basin (adapted after Congleton  1990 ; Jacobs et al.  1996 ; Njamnsi et al.  2022a )  
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reactivated Pan-African Mobile Belt structures (Fig.  1 a, b; 

Mateer et al. 1992; Fairhead  2020 ). 

 The Koum basin is a half-graben structure fi lled with up 

to 4500 m of fl uvio-lacustrine to intertidal sediments. The 

basin’s asymmetrical shape, with a synclinal structure in the 

northwest and a homoclinal dip to the southeast, is primar-

ily controlled by major synsedimentary faults, particularly 

along the northern margin of the basin (Fig.  1 c). Three main 

structural trends characterize the Koum basin: NNW–SSE 

and E–W basin boundary faults, and the NNE–SSW Tchol-

liré-Banyo Shear Zone (Shandini et al.  2018 ; Nolla et al. 

 2015 ; Njamnsi et al.  2022b ). 

 The geological history of the Koum basin can be divided 

into three main phases: the Pre-rift Phase, the Early Cre-

taceous Rifting Phase, and the Late Cretaceous Uplift and 

Inversion Phase. During the Early Cretaceous Rifting Phase, 

signifi cant tectonic activity and sedimentation led to the for-

mation of the basin. The Late Cretaceous Uplift and Inver-

sion Phase resulted in the erosion of a substantial portion of 

the sedimentary fi ll. Post-rift processes, such as the uplift of 

the Cameroon Volcanic Line, further eroded approximately 

2500 m of Upper Cretaceous and Paleogene sediments. The 

absence of Tertiary rifting and marine signatures suggests 

that the Koum basin represents a transitional zone between 

the West African Rift System (WARS) and the Central Afri-

can Rift System (CARS) (Genik  1992 ,  1993 ; Guiraud and 

Maurin  1992 ; Fairhead  2020 ). 

 The Koum basin exhibits a typical rift basin depositional 

sequence, characterized by a basal fl uvial unit overlain by 

a lacustrine unit and topped by a fl uvial unit (Lambiase 

 1990 ). The Cretaceous deposits of the Koum basin, col-

lectively known as the Koum Formation, are further sub-

divided into the lower Mbissirri Member and upper Gaba 

Sandstone Member (Fig.  2 ; Bessong et al.  2018 ; Njamnsi 

et al.  2022a ,  b ; Agbor-Taku et al.  2023a ,  b ; and Ngo Man-

deng et al.  2024a ,  b ).         

 The Mbissirri Member primarily consists of thick shale 

sequences interbedded with fi ne-grained mudstones, clay 

shales, thin limestones, and sandstones (Congleton  1990 ; 

Njamnsi et al.  2022b ; Agbor-Taku et al.  2023a ; Ngo Man-

deng et al.  2024a ). The member exhibits cyclical sedimen-

tary patterns, with cross-bedded sandstones overlain by 

thicker mudstones. Paleontological evidence, including 

trace fossils, plant remains, and vertebrate fossils, suggests 

a lacustrine and fl uvial depositional environment (Congleton 

et al.  1992 ; Nolla et al.  2015 ; Njamnsi et al.  2022b ; Ngo 

Mandeng et al.  2024a ). 

 The Gaba Sandstone Member is composed of medium- to 

coarse-grained sandstones, conglomerates, and interbedded 

mudstones and paleosols. This member represents a coarse-

grained, braided fl uvial system. Underlying the sedimentary 

fi ll is a Precambrian basement composed of various igne-

ous and metamorphic rocks (Fig.  2 ). The Koum basin is 

renowned for its diverse assemblage of dinosaur footprints, 

particularly those of theropods and sauropods. Based on the 

fossil evidence, the basin has been tentatively assigned an 

Aptian age, correlating it with the early Cretaceous Elrhaz 

Formation in Niger (Dejax et al.  1989 ; Congleton  1990 ; 

Congleton et al.  1992 ). 

     3   Sampling and analytical methods 

 A total of 15 fresh, representative dark-gray, fi ne-grained 

mudstone samples were collected from the Koum basin 

(Fig.  3 ). Samples were obtained from outcrops in the Gouga, 

Kali, and Mayo Gaba localities, focusing on mudstones due 

to their potential organic matter content (Fig.  3 ; Table  1 ). 

The samples were subjected to mineralogical, whole-rock 

geochemical, and isotopic analysis.          

  Fig. 2       Conceptual tectono-stratigraphy and gross depositional environments of the sedimentary fi ll of the Koum Basin (modifi ed after Congle-

ton  1990 ; Jacobs et al.  1996 ; Njamnsi et al.  2022b )  
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  Fig. 3       Field photographs of mudstone outcrops in  a ,  c  Mayo Gaba locality (KAL009, KAL010, KAL011, KAL012, and KAL013),  d ,  f  Kali 

locality (KAL001, KAL002, KAL003, KAL004, KAL006, KAL007, and KAL008), and  g ,  I  Gouga locality (GOU001, GOU002 and GOU003)  

  Table 1       Summary of the analyzed mudstone samples  

  Lithotype    Sample ID    Analyses  

  XRD    XRF    ICP-MS    δ 13 C VPDB     δ 2 H VSMOW     δ 18 O VSMOW   

   Gouga samples   
  Dark gray marl    GOU001    X    X    X    X    X    X  

  Dark purple mudstone    GOU002    X    X    X    X    X    X  

  Gray shale    GOU003    X        X    X    X  

   Kali Samples   
  Reddish-brown siltstone    KAL001    X    X    X    X    X    X  

  Brown claystone    KAL002    X    X    X    X    X    X  

  Reddish-brown mudstone    KAL003    X    X    X    X    X    X  

  Reddish-brown mudstone    KAL004    X    X    X    X    X    X  

  Gray shale    KAL006    X    X    X    X    X    X  

  Dark gray shales    KAL007    X        X    X    X  

  Gray claystone    KAL008    X        X    X    X  

   Mayo Gaba samples   
  Dark gray mudstone    KAL009    X        X    X    X  

  Reddish-brown-purple mudstones    KAL010    X    X    X    X    X    X  

  Dark gray-black mudstones (shale)    KAL011    X    X    X    X    X    X  

  Dark gray-black mudstones (shale)    KAL012    X    X    X    X    X    X  

  Dark gray-black mudstones (shale)    KAL013    X        X    X    X  
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    3.1   X-ray diff raction analyses 

 Mineralogical analyses were conducted at Queen’s Univer-

sity, Ontario, Canada, using X-ray diff raction (XRD). Pow-

dered samples were analyzed over an angular range of 5° to 

80°, 2Ɵ for 60 s/step using Cu radiation ( λ  = 1.54 Å) and 

a PIXcel3D detector. Mineral identifi cation was performed 

using the Highscore Pro 4.9 software and the International 

Center for Diff raction Data PDF-2 2020 database. 

     3.2   Bulk-rock geochemical analyses 

 Ten representative mudstone samples from the Koum basin 

were analyzed for major and trace element compositions 

at the Acme Analytical facility in Vancouver, Canada. 

For major element analyses, including  SiO 2 ,  Al 2 O 3 ,  K 2 O, 

 TFe 2 O 3 ,  Na 2 O, CaO, MgO,  P 2 O 5 ,  TiO 2 , and MnO, each 

rock sample (up to 250 g) was pulverized to over 90% using 

an agate mill and analyzed by X-ray fl uorescence (XRF) 

spectrometry after lithium borate  (Li 2 B 4 O 7 /LiBO 2 ) fusion 

and dilute nitric acid  (HNO 3 ) digestion. Trace element 

concentrations were determined by inductively coupled 

plasma–mass spectrometry (ICP-MS) analysis, following 

aqua regia digestion. Loss on ignition was calculated by 

weight loss after ignition at 1000 °C. To ensure data qual-

ity, the equipment was washed with silica between samples. 

Analytical precision was within 5% for most elements, with 

detection limits ranging from 0.002 to 0.01 wt% for major 

elements and from 0.001 to 10 ppm for trace elements. 

     3.3   Stable isotope analyses 

 Stable carbon, hydrogen, and oxygen isotope analyses were 

conducted on 15 mudstone samples at Queen’s University, 

Ontario, Canada. 

 Prior to carbon isotope analyses, the samples were 

treated with 20% hydrochloric acid (HCl) to remove car-

bonate minerals. The acid-treated samples were rinsed three 

times with high-purity (RO) water (15 MΩ resistivity) to 

remove residual acid. The rinsed samples were then dried 

overnight at 100 °C to remove any remaining moisture. The 

dried samples were weighed into tin capsules and the carbon 

isotopic composition of the samples was measured using 

a Thermo-Finnigan DeltaPlusXP Continuous-Flow Isotope 

Ratio Mass Spectrometer coupled to a Costech ECS 4010 

Elemental Analyzer. The  δ  13 C values were reported in per 

mil (‰) relative to the Vienna Pee Dee Belemnite (VPDB) 

standard, with a precision of 0.2 ‰. The atmospheric  δ  13 C 

values were calculated using the following equation from 

Arens et al. ( 2000 ):  δ  13 Catm = ( δ  13 Cplants + 18.67)/1.10. 

This equation relates the  δ  13 C values of plant material to the 

atmospheric  δ  13 C values, allowing for the estimation of past 

atmospheric carbon isotope compositions. 

 The samples for oxygen isotope analyses were treated 

with 20% HCl to remove carbonate minerals. The acid-

treated samples were rinsed three times with RO water 

(15 MΩ resistivity) to remove residual acid. The rinsed sam-

ples were dried overnight at 100 °C to remove any remain-

ing moisture. The dried samples were weighed into silver 

capsules and the oxygen isotopic composition of the samples 

was measured using a MAT 253 Stable Isotope Ratio Mass 

Spectrometer coupled to a ThermoScientifi c TC/EA High 

Temperature Conversion Elemental Analyzer. The  18 O/ 16 O 

ratios in the sample were normalized to the Vienna Standard 

Mean Ocean Water (VSMOW) international standard. The 

 δ  18 O values were calculated based on the normalized ratios 

and were reported in per mil (‰) relative to the VSMOW 

standard, with a reproducibility of 0.3 ‰. 

 The samples for hydrogen isotope analyses were weighed 

into silver capsules and degassed for 1 h at 100 °C to remove 

any adsorbed water vapor. The degassed samples were 

crushed and loaded into a zero-blank autosampler purged 

with ultra-high purity helium (UHP He). The hydrogen 

isotopic composition of the samples was measured using a 

MAT 253 Stable Isotope Ratio Mass Spectrometer coupled 

to a Thermo Scientifi c TC/EA High Temperature Conversion 

Elemental Analyzer. The  δ  2 H values were calculated based 

on the measured hydrogen isotope ratios and were reported 

in per mil (‰) relative to the VSMOW standard, with a 

precision of 2 ‰. 

      4   Results 

    4.1   Bulk-rock mineralogical composition 

 The mudstones from the Koum basin exhibit a diverse 

mineralogical profi le, primarily composed of phyllosili-

cates (~ 8.6%), feldspars (~ 30.5%), carbonates (~ 13.7%), 

and minor iron oxides (~ 2.7%) (Table   2 ; Fig.   4 ). Cal-

cite (6.3%–41.6%), quartz (1.7%–70.7%), and albite 

(6.7%–74.3%) dominate the mineral assemblage, with 

signifi cant variations in their proportions (Table  2 ). Addi-

tional minerals, including microcline, muscovite, vermicu-

lite, hematite, illite, biotite, kaolinite, analcine, dolomite, 

ankerite, and anorthite, occur in varying amounts, refl ect-

ing diverse depositional and diagenetic processes (Table  2 ; 

Fig.   4 ). Microcline is present in selected samples (e.g., 

GOU001, KAL001), reaching up to 15.5%. Muscovite 

ranges from trace amounts to 12.1% in KAL009, while ver-

miculite appears sporadically, up to 3.2% (Table  2 ). Hema-

tite is present in trace amounts, reaching 5.4% in KAL003. 

Illite is signifi cant in some samples, up to 18.1% in KAL004, 

while biotite is minor, reaching 10.6% in KAL005 (Table  2 ). 

Kaolinite ranges from 0.3% to 19.9%, with KAL001 show-

ing the highest content (19.9%). Analcine is present up to 
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  Fig. 4       X-ray diff raction patterns for mudstone samples (GOU001 to KAL013) from the Koum basin.  Ab  albite,  An  anorthite,  Ank  ankerite,  Anl  
analcine,  Bt  biotite,  Ca  calcite,  Hem  hematite,  Il  illite,  Ka  kaolinite,  Mus  muscovite,  Qtz  quartz,  V  vermiculite  
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36.9% in KAL009. Dolomite is present in trace amounts, 

while ankerite reaches 20.8% in KAL010. Anorthite is found 

only in KAL013 at ~ 10.5% (Table  2 ).          

     4.2   Bulk-rock geochemical composition 

 The bulk-rock major and trace element concentration for the 

studied mudstone samples from the Koum basin are listed in 

Table  3  and ESM_1 (Online Resource).  

    4.2.1   Major elements 

 The mudstones are primarily composed of  SiO 2  

(37.18–66.31  wt%), with lower amounts of  Fe 2 O 3  

(3.15–11.58 wt%). Other major oxides, such as  Al 2 O 3  

(9.08–17.01  wt%), CaO (0.37–22.95  wt%),  K 2 O 

(0.98–4.11 wt%), and  Na 2 O (0.42–5.47 wt%), exhibit vari-

able concentrations (Table  3 ). Minor elements, including 

MnO (0.02–0.41 wt%),  TiO 2  (0.40–1.14 wt%), and  P 2 O 5  

(0.10–0.39 wt%) are present in low amounts (Table  3 ). 

Compared to the average Post-Archaean Australian Shale 

(PAAS; Taylor and McLennan  1985 ), the Koum mud-

stones are enriched in  Na 2 O, CaO, MgO, and  P 2 O 5  but 

depleted in other major elements (Table  3 ). The geochemi-

cal ratios of  Al 2 O 3 /TiO 2  (17.56),  K 2 O/Al 2 O 3  (0.19),  K 2 O/

Na 2 O (1.77) and  SiO 2 /Al 2 O 3  (4.0) suggest the presence of 

clay minerals, K-bearing minerals and quartz (Table  3 ). 

Positive correlations between  K 2 O and  Al 2 O 3  ( R  2  = 0.81; 

Fig.  5 a) and  SiO 2  and  Al 2 O 3  ( R  2  = 0.52; Fig.  5 b) confi rms 

the association of K and Al within feldspars and clay 

minerals (e.g., kaolinite, illite, vermiculite). Based on the 

log(Fe 2 O 3 /K 2 O) vs. log(SiO 2 /Al 2 O 3 ) classifi cation dia-

gram, after Herron ( 1988 ), the samples are categorized 

as shales (Fig.  6 ).                 

     4.2.2   Trace elements 

 The Koum mudstones exhibit low concentrations of 

most analyzed trace elements, with notable exceptions 

including Sr (64.9–747.3 ppm), Ba (56–485.1 ppm), V 

(46–111 ppm), Ni (16.4–48.9 ppm), Cr (40.9–86.9 ppm), 

Ag (7–71 ppm), Cu (10.5–80.2 ppm), Rb (18.8–82.3 ppm), 

Zn (52.9–133.4  ppm), La (19.1–76.8  ppm), and Ce 

(33.1–121.9 ppm) as shown in ESM_1. When normalized 

to the Upper Continental Crust (UCC; Rudnick and Gao 

 2014 ), the mudstones show depletions in Ba, Nb, Hf, and 

Zr (Fig.  7 ), while elements including Ni, Cr, Co, Th, La, 

Ce, Pb, and Ti have roughly similar concentrations to UCC 

(Fig.  7 ). Enrichment factor analysis, expressed as EFaver-

age = (element/Ti) sample  / (element/Ti) PAAS  (Tribovillard 

et al.  2006 ), revealed that Zn, Sr, and Mo have elevated 

concentrations (EF values > 1) compared to the PAAS 

average, while Co, V, Cu, and Ni show lower concentra-

tions (Fig.  8 ).                 

  Table 3       Major element compositions (wt%) for mudstone samples from the Koum basin  

  LOI  loss on ignition,  PAAS  Post Archean Australia Shale (Taylor and McLennan  1985 ) 

  Sample    KAL001    KAL002    KAL003    KAL004    KAL006    KAL010    KAL011    KAL012    GOU001    GOU002    Average    PAAS  

  SiO 2     64.68    65.87    66.31    66.11    52.64    64.01    47.36    37.18    38.35    50.14    55.27    62.80  

  Al 2 O 3     15.81    15.95    15.61    14.53    15.50    17.01    10.11    9.08    9.39    16.90    13.99    18.90  

  K 2 O    4.11    4.10    3.90    2.37    1.60    4.00    1.16    0.98    1.69    3.77    2.77    3.70  

  TFe 2 O 3     7.52    6.25    6.89    5.84    10.24    6.50    4.65    4.56    3.15    11.58    6.72    7.22  

  Na 2 O    2.83    3.04    2.84    1.98    5.47    2.41    3.67    3.46    2.03    0.42    2.82    1.20  

  CaO    0.63    0.62    0.37    1.14    2.14    0.66    9.67    10.04    22.95    2.23    5.05    1.30  

  MgO    0.83    0.77    0.70    2.96    4.16    0.90    3.37    3.22    2.27    6.07    2.53    2.20  

  MnO    0.04    0.06    0.03    0.05    0.09    0.02    0.09    0.12    0.41    0.09    0.10    0.11  

  P 2 O 5     0.29    0.25    0.14    0.23    0.16    0.39    0.10    0.15    0.21    0.25    0.22    0.16  

  TiO 2     1.07    0.89    1.14    1.05    0.78    1.05    0.46    0.40    0.82    0.73    0.84    1.00  

  LOI    2.20    2.50    2.30    4.30    7.70    3.30    19.10    30.60    19.40    7.60    9.90    6.00  

  Total    100.01    100.30    100.23    100.56    100.48    100.25    99.74    99.79    100.67    99.78    100.18    104.59  

  Al 2 O 3 /TiO 2     14.78    17.92    13.69    13.84    19.87    16.20    21.98    22.70    11.45    23.15    17.56    18.90  

  K 2 O/Al 2 O 3     0.26    0.26    0.25    0.16    0.10    0.24    0.11    0.11    0.18    0.22    0.19    0.20  

  K 2 O/Na 2 O    1.45    1.35    1.37    1.20    0.29    1.66    0.32    0.28    0.83    8.98    1.77    3.08  

  SiO 2 /Al 2 O 3     4.09    4.13    4.25    4.55    3.40    3.76    4.68    4.09    4.08    2.97    4.00    3.32  

  P 2 O 5 /TiO 2     0.27    0.28    0.12    0.22    0.21    0.37    0.22    0.38    0.26    0.34    0.27    0.16  
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      4.3   Stable isotope composition 

 Table  4  presents the  δ  13 C,  δ  18 O, and  δ  2 H values for the stud-

ied mudstones, reported in parts per mil (‰) relative to 

VPDB and VSMOW, respectively.  

    4.3.1    δ  13 C VPDB  composition 

 The Koum mudstones exhibit a range  δ  13 C values from 

− 25.2 ‰ to − 35.2 ‰, with an average of − 28.2 ‰ 

( n  = 15; Table  4 ). Samples from the Gouga locality show 

a narrow range of  δ  13 C values (− 25.8 ‰ to − 27.6 ‰), 

which are slightly more positive than the overall average 

(Table  4 ). The Kali samples, on the other hand, exhibit a 

wider range of  δ  13 C values (− 25.2 ‰ to − 35.2 ‰), with 

a particularly low value for sample KAL002 (− 35.2 ‰), 

which is signifi cantly more negative than the overall aver-

age (Table  4 ). The Mayo Gaba samples generally have more 

negative  δ  13 C values (− 27.7 ‰ to − 31.0 ‰), with a trend 

toward lower  δ  13 C values in samples KB-KAL011 (− 30.0 

‰), KAL012 (− 29.7 ‰), and KAL013 (− 31.0 ‰), except 

for KAL010, with a slightly more positive  δ  13 C value of 

− 27.7 ‰ (Table  4 ). 

     4.3.2    δ  18 O VSMOW  composition 

 The  δ  18 O values of the Koum mudstones range from + 3.6‰ 

to + 24.9‰ with an average of + 12.2‰ ( n  = 15; Table  4 ). 

Samples from the Gouga locality have  δ  18 O values 

  Fig. 5       Binary plots showing the relation between selected major oxides in the Koum mudstones:  a   Al 2 O 3  versus  K 2 O and  b   Al 2 O 3  versus  SiO 2   

  Fig. 6       Geochemical classifi cation of the Koum mudstones based on 

the log  (SiO 2 /Al 2 O 3 ) versus log  (TFe 2 O 3 /K 2 O) diagram, as proposed 

by Herron ( 1988 )  

  Fig. 7       Upper continental crust (UCC)-normalized multi-elemental 

variation diagrams for the Koum mudstones. UCC data from McLen-

nan ( 1989 )  
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between + 5.7‰ and + 21.7‰, with an average of + 14.5‰ 

(Table   4 ). The  δ  18 O values for the Kali samples range 

from + 3.6 ‰ to + 19.8‰, with an average of + 10.5‰. 

The Mayo Gaba samples generally exhibit higher  δ  18 O val-

ues (+ 7.6‰ to + 24.9‰; Table  4 ), with samples KAL011 

and KAL013 showing the highest  δ  18 O values of + 24.9‰ 

and + 22.3‰ respectively (Table  4 ). 

     4.3.3    δ  2 H VSMOW  composition 

 The  δ  2 H values of the Koum mudstones range from − 104‰ 

to − 50‰ with an average of − 68‰ ( n  = 15). The Gouga 

(− 56‰ to − 81‰) and Kali (− 51‰ to − 78‰) sam-

ples exhibits less negative  δ  2 H values compared to the 

Mayo Gaba samples, which show more negative  δ  2 H values 

(− 50‰ to − 104‰), particularly samples KAL011(− 104 

‰), KAL012 (− 100 ‰), and KAL013 (− 99 ‰). 

       5   Discussions 

    5.1   Paleoweathering 

 Several geochemical indices, including the Chemical Index 

of Alteration (CIA), the Index of Compositional Variability 

(ICV), and the Plagioclase Index of Alteration (PIA), are 

commonly used to assess the degree of weathering in sedi-

mentary rocks (Nesbitt and Young  1982 ; Fedo et al.  1995 ; 

Cox et al.  1995 ; Price and Velbel  2003 ; Roddaz et al.  2006 ; 

Bauluz et al.  2000 ). The CIA values for unweathered igne-

ous rocks such as basalts (30–45) and granitoids (45–55), 

are lower compared to moderately weathered Phanerozoic 

shales (70–75), which contain minerals like muscovite, 

illite, and kaolinite (Cox et al.  1995 ). A high ICV value 

indicates a high degree of compositional variability, sug-

gesting a less mature sedimentary rock with a signifi cant 

amount of silicate minerals other than clay. These rocks 

often form in tectonically active settings. Conversely, a low 

ICV value indicates a compositionally mature sedimentary 

rock, enriched in clay minerals and typically derived from 

mature sediments or Cratonic environments (Cox et al.  1995 ; 

Van de Kamp and Leake  1985 ). 

 Comparison of the Koum mudstones to PAAS values 

(Taylor and McLennan  1985 ) reveals minor depletions in 

some major elements including  SiO 2 ,  Al 2 O 3 ,  K 2 O, and 

 Fe 2 O 3  and slight enrichments in others such as  Na 2 O, 

CaO, and  P 2 O 5 , suggesting a low to moderate degree 

of weathering (Table   3 ). The CIA (41.06−65.70) and 

PIA (40.11−72.98) values (Table   5 ) support this fi nd-

ing, indicating a source area with a mix of minimally to 

moderately weathered rocks. The low ICV values (aver-

age 1.64; Table  5 ) and mineral composition of the Koum 

mudstones, including the abundance of albite (~ 39%) and 

low amounts of clay minerals such as vermiculite (~ 2%), 

biotite (~ 9%), kaolinite (~ 16%), illite (~ 17%), and mus-

covite (~ 6%), suggests a relatively immature source area 

(Tables  2 , Fig.  4 ). This implies rapid erosion and deposi-

tion of fi rst-cycle material in a tectonically active setting, 

  Fig. 8       PAAS-normalized trace element plot for the Koum mud-

stones. PAAS data from Taylor and McLennan ( 1985 ).  EF average , a 

geochemical normalization index, was calculated as (element/Ti) sample  

/(element/Ti) PAAS  (Tribovillard et al.  2006 )  

  Table 4       Carbon, hydrogen and oxygen isotope compositions for 

mudstone samples from the Koum basin  

  δ  13 Catm = ( δ  13 C plants  + 18.67) / 1.10 (Arens et al.  2000 ) 

  Sample ID     δ  13 Corg 

(‰VPDB)  

   δ  2 H 

(‰VSMOW)  

   δ  18 O TCEA  

(‰VSMOW)  

   δ  13 Catm  

  GOU001    − 26.9    − 56    16.1    − 7.6  

  GOU002    − 27.6    − 81    5.7    − 8.2  

  GOU003    − 25.8    − 58    21.7    − 6.6  

  KAL001    − 28.4    − 58    4.0    − 8.9  

  KAL002    − 35.2    − 62    3.6    − 15.1  

  KAL003    − 25.9    − 78    4.9    − 6.6  

  KAL004    − 25.2    − 66    9.2    − 6.0  

  KAL006    − 26.1    − 51    9.3    − 6.8  

  KAL007    − 27.1    − 52    19.8    − 7.8  

  KAL008    − 26.5    − 52    14.7    − 7.2  

  KAL009    − 30.3    − 50    7.6    − 10.6  

  KAL010    − 27.7    − 52    11.6    − 8.2  

  KAL011    − 30.0    − 104    24.9    − 10.4  

  KAL012    − 29.7    − 100    18.7    − 10.1  

  KAL013    − 31.0    − 99    22.3    − 11.3  

  Max    − 25.2    − 50.0    24.9    − 6.0  

  Min    − 35.2    − 103.5    3.6    − 15.1  

  Average    − 28.2    − 68.0    12.9    − 8.8  



1025Acta Geochim (2025) 44:1014–1039 

consistent with previous studies on the Koum basin and 

Upper Benue Trough (Ngo Mandeng et al.  2024a ; Tch-

ouatcha et al.  2021 ).  

 On the A-(Al 2 O 3 )-CN (CaO +  Na 2 O)-K  (K 2 O) triangu-

lar plot of molecular proportions after Nesbitt and Young 

( 1989 ), the Koum mudstones align with the adamellite–gran-

odiorite/granite weathering trend (Fig.  9 a). This alignment 

is consistent with the provenance of the mudstones as 

discussed in Sect.  5.2 . The Th/U ratio is a useful tool for 

assessing the extent of weathering in source areas. Under 

surfi cial oxidizing conditions, U is more mobile than Th, 

which tends to concentrate in residual materials (McLennan 

 2001 ; López et al.  2005 ). High Th/U ratios (> 4.0) indicate 

intense weathering or sedimentary recycling (McLennan 

et al.  1993 ; Partin et al.  2013 ). The elevated Th/U ratio of the 

Koum mudstones (~ 5.85; ESM_1), compared to the PAAS 

(4.71) and UCC (3.89) values, indicates a moderate degree 

of weathering and recycling in the source area.         

 While the CIA value and the A–CN–K diagram (Nesbitt 

and Young  1989 ) are commonly used to assess chemical 

weathering in sedimentary rocks, the CIA value primarily 

refl ects the weathering of feldspars in felsic rocks and does 

not account for the behavior of divalent metals (e.g.,  Fe 2+ , 

 Mg 2+ ,  Mn 2+ ) found in mafi c minerals. The A–CN–K system 

also overlooks  SiO 2 , a major component of silicate miner-

als. Moreover, studies by Meunier et al. ( 2013 ) and Li and 

Yang ( 2010 ) showed that the CIA value can be infl uenced by 

source rock composition, post-depositional processes (e.g., 

diagenesis, metamorphism), and drainage basin heterogene-

ity, rather than solely refl ecting chemical weathering. Con-

sequently, the CIA value may record long-term regional 

weathering trends that do not directly correspond to envi-

ronmental conditions at the time of sediment deposition. 

 Given these limitations, we interpret the CIA 

and A–CN–K results alongside other geochemical 

indicators, such as the  M + –4Si–R 2+  system (where 

 M +  =  Na +  +  K +  +  2Ca 2+ ; 4Si = Si/4;  R 2+  =  Fe 2+  +  Mg 2+)  

which integrates variations in alkali, alkaline earth, silica, 

and divalent cations (Meunier et al.  2013 ). When plotted in 

 M + –4Si–R 2+  space, the Koum mudstones cluster between 

the felsic and mafi c compositional fi elds (Fig.  9 b, c). The 

co-variation of Δ4Si% with the  R 3+ /(R 3+  +  R 2+  +  M + ) 

ratio provides a more robust insight into the nature of the 

source rocks and the degree of weathering (Meunier et al. 

 2013 ). High  R 3+ /(R 3+  +  R 2+  +  M + ) values (approaching 1) 

and Δ4Si% values greater > 50% indicate intense chemical 

weathering and residual enrichment of immobile elements, 

while lower values suggest limited alteration. 

 The  R 3+ /(R 3+  +  R 2+  +  M + ) ratio, refl ecting the enrich-

ment of immobile trivalent cations (e.g.,  Al 3+ ,  Fe 3+ ) rela-

tive to mobile monovalent and divalent cations, serves as 

a sensitive weathering indicator (Meunier et al.  2013 ). In 

the Koum mudstone samples, the  R 3+ /(R 3+  +  R 2+  +  M + ) 

values range from 0.19 to 0.67, with most falling between 

0.53 and 0.67 (Table  6 ), suggesting moderate chemical 

weathering through the leaching of mobile elements and 

enrichment of trivalent cations. Lower ratios (0.19–0.31) 

exhibited by some of the samples indicate less intense 

weathering or input from more mafi c, chemically imma-

ture sources (Table  6 ). On the  R 3+ /(R 3+  +  R 2+  +  M + ) ver-

sus Δ4Si% plot (after Meunier et al.  2013 ), most of the 

Koum mudstone samples fall between the granitic and 

mafi c trends, refl ecting a source region composed of mini-

mally to moderately weathered rocks (Fig.  9 d).  

  Table 5       Paleoweathering and 

paleoenvironment parameters 

for the Koum mudstones  

 N-value  =  100  ×  MgO/Al 2 O 3  (after Chen et  al.  2022 ); C-value  =  Σ(Fe  +  Mn  +  Cr  +  Ni  +  V  +  Co)/

Σ(Ca + Mg + Sr + Ba + K + Na) (after Fedo et al.  1995 ); A/CNK = molar  Al 2 O 3 /(CaO +  Na 2 O +  K 2 O) 

and A/NK = molar  Al 2 O 3 /(Na 2 O +  K 2 O) (after Nesbitt and Young  1989 ); ICV = [(Fe 2 O 3  +  K 2 O +  Na 2 O 

+ CaO + MgO +  TiO 2 )/Al 2 O 3 ] (after Cox et al.  1995 ); CIA = [molar  Al 2 O 3 /(Al 2 O 3  + CaO +  Na 2 O +  K 2 O

) × 100] (after Nesbitt and Young  1982 ); PIA = [molar  (Al 2 O 3 –K 2 O)/(Al 2 O 3 –K 2 O +  Na 2 O + CaO) × 100] 

(after Fedo et al.  1995 );  C org /P = (TOC/12)/(P/30.97) (after Algeo and Ingall  2007 ). TOC values are from 

Njamnsi et al. ( 2022b ) 

  Sample     N -value     C -value    PIA    CIA    ICV    A/NK    A/CNK    TOC(%)    C org /P  

  KAL001    5.25    0.90    66.21    60.68    1.07    1.74    1.54    0.04    0.36  

  KAL002    4.83    0.74    65.26    60.15    0.98    1.69    1.51    0.04    0.41  

  KAL003    4.48    0.89    68.07    62.01    1.01    1.76    1.63    0.02    0.37  

  KAL004    20.37    0.70    69.20    64.80    1.06    2.50    1.84    0.03    0.34  

  KAL006    26.84    0.77    51.63    51.44    1.57    1.44    1.06    0.03    0.48  

  KAL010    5.29    0.82    71.03    64.15    0.91    2.05    1.79    0.11    0.73  

  KAL011    33.33    0.26    41.08    42.01    2.27    1.39    0.72    6.91    178.34  

  KAL012    35.46    0.26    40.11    41.06    2.50    1.34    0.70    5.48    94.29  

  GOU001    24.17    0.12    51.82    51.45    3.50    1.82    1.06    0.02    0.25  

  GOU002    35.92    0.93    72.98    65.70    1.47    3.54    1.91    0.02    0.21  
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  Fig. 9       The composition of the Koum mudstones is plotted in  a  the A-CN-K ternary plot of Nesbitt and Young (1984);  b  the  M + –4Si–R 2+  sys-

tem (Meunier et al.  2013 );  c  the representative domains of the major rock groups, scaled in the  R 3+ /(R 3+  +  R 2+  +  M + ) coordinate; and  d  the 

Δ4Si% vs.  R 3+ /(R 3+   +  R 2+   +  M + ) diagram (Meunier et al.  2013 ). The  dark arrows  in  a  indicate weathering trends of igneous rocks (gabbro, 

tonalite, adamellite, granodiorite, and granite).  Bt  biotite,  Chl  chlorite,  Gi  gibbsite,  Il  illite,  Ka  kaolinite,  Ksp  K-feldspar,  Mus  muscovite,  Pl  pla-

gioclase,  Sm  smectite. For the calculation of the  M + , 4Si,  R 2+ ,  R 3+ ,  R 3+ /(R 3+  +  R 2+  +  M + ), and Δ4Si% parameters, see Table  6  for details  

  Table 6       Composition parameters for the Koum mudstones in the  M + –4Si–R 2+  system  

 4Si = Si/4;  M +   =  Na +  +  K +  +  2Ca 2+ ;  R 2+   =  Mg 2+  +  Fe 2+  +  Mn 2+ ;  R 3+   =  Al 3+  +  Fe 3+ ; Δ4Si% = [(4Si altered sample —4Si unaltered parent rock ) × 100]/

(100—4Si unaltered parent rock ), after Meunier et al. ( 2013 ). The source rock is considered to be represented by the average upper continental crust 

(Condie  1993 ), where 4Si% = 39.8 

  Sample    Bulk composition    Normalized parameters  

  4Si    M +     R 2+     R 3+     R 3+ /

R 3+  +  R 2+  +  M +   

  4Si +  M +  +  R 2+     4Si%    M + %    R 2+ %    Δ4Si%  

  KAL001    269.10    201.05    20.60    404.30    0.65    490.74    54.83    40.97    4.20    24.97  

  KAL002    274.05    207.26    19.11    391.14    0.63    500.41    54.76    41.42    3.82    24.86  

  KAL003    275.88    187.64    17.37    392.49    0.66    480.89    57.37    39.02    3.61    29.18  

  KAL004    275.05    154.87    73.45    358.16    0.61    503.36    54.64    30.77    14.59    24.65  

  KAL006    219.00    286.80    103.23    432.29    0.53    609.03    35.96    47.09    16.95    0.87  

  KAL010    266.31    186.23    22.33    415.07    0.67    474.87    56.08    39.22    4.70    27.04  

  KAL011    197.04    487.92    83.62    256.55    0.31    768.58    25.64    63.48    10.88    0.05  

  KAL012    154.68    490.52    79.90    235.22    0.29    725.10    21.33    67.65    11.02    3.59  

  GOU001    159.55    919.86    56.33    223.64    0.19    1135.74    14.05    80.99    4.96    1.20  

  GOU002    208.60    173.12    150.62    476.53    0.60    532.35    39.19    32.52    28.29    5.86  
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     5.2   Sediment source 

 Geochemical analysis of mudstones, is a valuable tool for 

determining the source of sediments. This is because mud-

stones are relatively homogeneous and less susceptible to 

post-depositional alteration (Cox et al.  1995 ; Cullers et al. 

 1988 , 1994; Hayashi et al.  1997 ; Zhang et al.  2022 ; Tao 

et al.  2017 ; Wu et al.  2024 ). The  K 2 O/Al 2 O 3  ratio is a com-

monly used proxy for provenance assessment (Cox et al. 

 1995 ). Low  K 2 O/Al 2 O 3  ratios (< 0.3) indicate a clay-rich 

sources, while higher ratios (0.4–1.0) suggest a signifi cant 

contribution from alkali feldspar. The low  K 2 O/Al 2 O 3  ratio 

(~ 0.19) for the Koum mudstones indicates a clay-rich source 

(Table  3 ). Major element ratios, such as  Al 2 O 3 /TiO 2 , are 

often used to discriminate between diff erent source rock 

types. Mafi c sources generally yield  Al 2 O 3 /TiO 2  ratios below 

14, while intermediate igneous sources yield  Al 2 O 3 /TiO 2  

ratios that typically fall between 19 and 28 (Girty et al.  1996 ; 

Hayashi et al.  1997 ). The  Al 2 O 3 /TiO 2  ratios (11.45–23.15) 

for the Koum mudstones (Table  3 , Fig.  10 a), suggests an 

intermediate igneous source. Additional geochemical indi-

cators, such as the  K 2 O/Na 2 O ratio (~ 1.77),  TiO 2 /Zr ratio 

(~ 0.14),  Na 2 O (~ 2.82 wt%), MgO (~ 2.53 wt%),  P 2 O 5  

(~ 0.22 wt%), and  SiO 2  (~ 55.27 wt%) contents (Table  3 ; 

Fig.  10 b), further support this interpretation. These fi ndings 

are consistent with recent study on the Koum basin (Ngo 

Mandeng et al.  2024a ).         

 Trace element ratios, such as Zr/Sc, Th/Sc, La/Sc, Sc/Th, 

and La/Th, are useful tools for determining the source of 

sedimentary rocks. Elements like Sc, La, Th, and Hf are rela-

tively resistance to weathering and diagenesis, making them 

reliable indicators of source rock composition (Condie  1993 ; 

Taylor and McLennan  1985 ; Wronkiewicz and Condie  1987 ; 

McLennan et al.  1993 ; Floyd and Leveridge  1987 ). The Sc/

Th ratio, in particular, can be used to diff erentiate between 

felsic and mafi c sources (McLennan  1991 ; Lyubetskaya and 

Korenaga 2007). Crustal sources typically have lower Sc/Th 

ratios (~ 1.33) and higher La/Sc ratios (~ 2.7) compared to 

  Fig. 10       Bivariate plots showing the provenance of Koum mudstones:  a   Al 2 O 3  versus  TiO 2  (Hayashi et al.  1997 ),  b  Zr versus  TiO 2  (Hayashi 

et  al.  1997 ),  c  Zr/Sc versus Th/Sc (McLennan et  al.  1993 ), and  d  Hf versus La/Th (Floyd and Leveridge  1987 ).  AND   andesite,  BAS   basalt, 

 GRA   granite,  PSS  passive margin sandstone  
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mafi c sources with Sc/Th ratios near 20.3 and lower La/Sc 

ratios near 0.91 (Taylor and McLennan  1981 ; McDonough 

and Sun  1995 ; Lyubetskaya and Korenaga 2007; Rudnick 

and Gao  2014 ). The Koum mudstones exhibits a La/Sc ratio 

(~ 6.30), signifi cantly higher than that of mafi c sources and 

a Sc/Th ratio (~ 0.84) slightly lower than the typical crustal 

value (ESM_1). These geochemical ratios, with the posi-

tioning of the samples on Th/Sc vs. Zr/Sc and La/Th vs. Hf 

diagrams, further supports an intermediate igneous prov-

enance (Fig.  10 c, d). The plotting of the samples between the 

felsic and mafi c compositional domains of the  M + –4Si–R 2+  

coordinate system and on the  R 3+ /(R 3+  +  R 2+  +  M + ) vs. 

Δ4Si% diagram of Meunier et al. ( 2013 ) confi rms contribu-

tions from felsic source rocks, such as granites, with some 

input from mafi c lithologies (Fig.  9 b–d). 

     5.3   Paleoclimate and paleoenvironmental conditions 

    5.3.1   Constraints from bulk-rock mineralogy 

 The mineralogical composition of mudstones is a valuable 

tool for reconstructing past environments and climates (e.g., 

Thiry  2000 ; Ruff ell et al.  2002 ; Fagel et al.  2007 ; Lanson 

et al.  2009 ; Bristow et al.  2009 ; Dudek et al.  2012 ; Decon-

inck et  al.  2020 ). The composition of mudstones often 

refl ects the dominant weathering regime (physical and/or 

chemical), which is infl uenced by climate (Weaver  1989 ). 

Additionally, variations in the CIA index of mudstones, 

which is linked to plagioclase leaching, can provide insights 

into weathering intensity and past humidity levels (Nesbitt 

and Young  1982 ,  1989 ). The Koum mudstones, with their 

minimal diagenetic alteration, are well-suited for paleoen-

vironmental reconstruction (Table  2 ; Fig.  4 ). 

 The Koum mudstones are predominantly composed of 

calcite (6.3%–41.6%), quartz (1.7%–70.7%), and albite 

(6.7%–74.3%), with minor amounts of microcline, musco-

vite, vermiculite, hematite, illite, biotite, kaolinite, dolo-

mite, ankerite and anorthite (Table  2 ; Fig.  4 ). The mineral 

assemblage refl ects a complex interplay of depositional and 

diagenetic processes. The presence of minerals like zeolites 

(analcine) and carbonates (ankerite, dolomite), suggests 

potential low-grade metamorphism or hydrothermal altera-

tion (Table  2 ). Kaolinite, indicative of weathering under 

warm and humid conditions and illite, associated with lim-

ited hydrolysis and dry environments, suggests variable cli-

matic conditions during deposition (Chamley  1989 ; Thiry 

 2000 ; Velde  1995 ; Li et al.  2000 ; Adatte et al.  2002 ; Decon-

inck et al.  2003 ,  2019 ; Gertsch et al.  2011 ; Charbonnier et al. 

 2020 ). 

 The low kaolinite content in samples KAL001 

(~ 19.90%) and KAL002 (~ 12.90%), coupled with the 

low detrital illite content in samples KAL003 (~ 15.70%) 

and KAL004 (~  18.10%), indicates limited chemical 

weathering, suggesting a transition between humid and 

drier or semi-arid conditions (Table  2 ). The presence of 

vermiculite indicates alteration of biotite and muscovite 

to trioctahedral and dioctahedral vermiculite, respectively, 

likely due to high precipitation and chemical weathering 

(Walker  1975 ; Moore and Reynolds  1997 ). The overall 

clay mineral composition suggests similar climatic condi-

tions and depositional environment in the Gouga, Kali and 

Mayo Gaba localities. 

 The dominance of quartz (1.7%–70.7%) in the Koum 

mudstones suggests a low degree of alteration and short 

transport distances (Table  2 ; Fig.  4 ). The low CIA values 

(~ 56.35; Table  5 ) coupled with the position of the mud-

stones on the  SiO 2  vs.  Al 2 O 3  +  K 2 O +  Na 2 O discrimina-

tion diagram after Suttner and Dutta (1986), further sup-

port a semi-arid climatic setting (Fig.  11 ). These fi ndings 

are consistent with those of previous studies on the Koum 

basin and Upper Benue Trough, which also suggested 

semi-arid conditions (Bessong et al.  2018 ; Tchouatcha 

et al.  2021 ; Njamnsi et al.  2022a ,  b ; Ngo Mandeng et al. 

 2024a ,  b ).         

 However, major element-based indices refl ect broader 

compositional trends that are infl uenced by multiple fac-

tors, including provenance, weathering intensity, and min-

eral stability, which may not directly align with trace ele-

ment-based paleoclimate proxies. While a major element 

dataset  (SiO 2  vs.  Al 2 O 3  +  K 2 O +  Na 2 O) generally supports 

deposition under semi-arid conditions, there is the need for 

a multiproxy approach that takes into consideration both 

major and trace element concentrations to appropriately 

interpret the paleoclimatic condition, especially in altered 

sedimentary settings like the Koum basin. 

  Fig. 11       SiO 2  versus  Al 2 O 3   +   K 2 O  +   Na 2 O plot (Suttner and Dutta 

 1986 ) showing the climatic conditions during the formation of the 

Koum mudstones  
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     5.3.2   Constraints from bulk-rock geochemistry 

 Past environmental conditions including paleosalinity can 

be estimated using various geochemical proxies. Two com-

monly employed proxies are the Sr/Ba ratio and the  N -value 

(100 × MgO/Al 2 O 3 ), which exhibit strong correlations with 

water salinity (Chen et al.  2022 ; Zhang et al.  2023 ). As water 

salinity increases, the Sr/Ba ratio also rises. This is because 

 Ba 2+  ions, being more reactive than  Sr 2+  ions, preferentially 

combine with sulfate  (SO 4  
2− ) to form insoluble precipitates 

(Walker et al. 1963). The  N -value proxy leverages the con-

trasting behavior of Mg and Al. Magnesium is primarily 

associated with marine environments, while Al is more 

indicative of terrestrial sources (Tian et al.  2014 ). Based 

on these proxies, paleosalinity can be categorized as fresh-

water (Sr/Ba < 0.2,  N -value < 1), brackish water (0.2 < Sr/

Ba < 0.5, 1 <  N -value < 10), and saline water (Sr/Ba > 0.5, 

 N -value > 10) (Meng et al.  2012 ; Wei & Algeo  2020 ; Chen 

et al.  2022 ; Wu et al.  2024 ). The Koum mudstones, with 

their Sr/Ba ratios of 0.34–3.25 (ESM_1) and  N -values from 

4.48 to 35.92 (Table  5 ), exhibit characteristics of both brack-

ish and saline environments. 

 Paleoclimate and paleosalinity are interconnected since 

arid conditions can result to increased salinity (Chen et al. 

 2020 ). Paleoclimate can be reconstructed using proxies 

such as the  C -value and the Sr/Cu ratio (Lerman et al.  1995 ; 

Zhao et al.  2007 ; Jia et al.  2013 ). The  C -value, a geochemi-

cal index calculated as Σ(Fe + Mn + Cr + Ni + V + Co)/

Σ(Ca + Mg + Sr + Ba + K + Na), suggests that elements 

including Fe, Mn, and Cr are primarily enriched in moist 

environments, while elements such as Ca, Mg, and Sr tend 

to be enriched in arid environments (Zhao et al.  2007 ; Cao 

et al.  2012 ). The Sr/Cu ratio is a useful proxy for paleocli-

mate reconstruction, with higher values typically indicat-

ing drier conditions and lower values suggesting wetter 

periods (Lerman  1995 ; Meng et al.  2012 ; Jia et al.  2013 ). 

However, interpretations vary with some studies defi ning Sr/

Cu > 10 as arid and 1–10 as warm and humid (Wang et al. 

 1997 ; Hu et al.  2012 ; Qu et al.  2019 ), while other studies 

propose Sr/Cu > 5 for arid climates and 1.3–5 for humid 

conditions (Lerman  1987 ; Hu et al.  2017 ). This inconsist-

ency underscores the need for the integration of multiple 

geochemical proxies for a more reliable paleoclimate inter-

pretation. The  C -value index provides a more quantitative 

assessment of paleoclimate, categorizing environments 

as arid ( C -value < 0.2), semi-arid (0.2 ≤  C -value < 0.4), 

semi-arid to semi-moist (0.4 ≤  C -value < 0.6), semi-moist 

(0.6 ≤  C -value < 0.8) and moist ( C -value ≥ 0.8) (Moradi 

et al.  2016 ; Wang et al.  2022 ; Wu et al.  2024 ). 

 The wide range of Sr/Cu ratios (1.88–37.47; ESM_1) 

and C-values (0.12–0.93; Table  5 ) in the Koum mudstones 

suggests a complex paleoclimatic history marked by fl uc-

tuations between arid and humid conditions. Paleosalinity 

(N values, Sr/Ba ratios) and paleoclimate (Sr/Cu, C-value) 

proxies (ESM_1; Table  5 ) indicate deposition in a dynamic 

environment with variable salinity, likely refl ecting seasonal 

or long-term climatic changes. However, the presence of 

alteration minerals such as analcime, ankerite, and dolomite 

indicative of low-grade metamorphism and/or hydrothermal 

alteration suggests that these geochemical signatures may 

have been partially overprinted. Post-depositional processes 

are known to mobilize Sr and Cu, potentially altering the 

original Sr/Cu and Sr/Ba ratios. Strontium, for instance, 

can substitute into carbonates like dolomite and ankerite, 

leading to Sr enrichment during diagenesis or hydrothermal 

fl uid interaction (Veizer  1983 ; Al-Aasm  2003 ; Cangelosi 

et al.  2020 ). In contrast, copper is more easily mobilized 

under oxidizing, acidic, or hydrothermal conditions, often 

resulting in its depletion (Chávez  2021 ). These alterations 

can artifi cially aff ect the Sr/Cu and Sr/Ba ratios, mimicking 

signals typical of arid or saline environments and biasing 

paleoclimate and paleosalinity interpretations. Thus, while 

the observed Sr/Cu and Sr/Ba trends suggest variable salin-

ity and aridity, post-depositional modifi cations cannot be 

rolled out. 

 Tyson and Pearson ( 1991 ) defi ned four primary redox 

facies (oxic, dysoxic, suboxic, and anoxic) based on oxy-

gen and hydrogen sulfi de concentrations in aquatic environ-

ments. Algeo and Li ( 2020 ) further subdivided the suboxic 

facies into the suboxidized and subreduced categories. 

Redox environments can be characterized using various geo-

chemical proxies, including those based on the C–S–Fe–P 

system (Raiswell et al. 1988; Poulton and Canfi eld  2011 ), 

such as Fe/Al ratios (Lyons and Severmann 2006) and 

 C org /P = (TOC/12)/(P/30.97) ratios (Algeo and Ingall  2007 ), 

as well as those based on trace-metal enrichment factors 

(Algeo and Liu  2020 ), bimetallic ratios (Tang et al.  2020 ; 

Fathy et al.  2023 ), Ce anomalies (Tostevin et al.  2016 ), and 

biomarkers (Fathy et al.  2023 ). 

 Principal component analysis has shown that C–S–Fe–P 

system proxies and trace-metal enrichment factors are the 

most reliable indicators for paleoredox evaluations (Algeo 

and Liu  2020 ). While Ce anomalies can be informative, they 

may not be suitable for mudstones as they require a hydrog-

enous signal (Liu et al. 1988). The  C org /P ratio, a proxy 

from the C–S–Fe–P system, has been identifi ed as a robust 

indicator of paleoredox conditions in recent studies (Wang 

et al.  2022 ; Lei et al.  2023 ). Given the brackish to saline 

nature of the Koum mudstones, the  C org /P ratio was selected 

for this study. Based on established  C org /P threshold values 

(oxic < 50, dysoxic/hypoxic 50–100, anoxic > 100) (Algeo 

and Ingall  2007 ), the wide range of  C org /P ratios (0.21 to 

178.34; Table  5 ) for the Koum mudstones suggests that their 

depositional environment varied from oxic to anoxic condi-

tions. This variability likely refl ects changes in oxygen levels 

over time, potentially infl uenced by factors like water depth. 
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 The Zr/Rb ratio is a proxy for inferring paleo-water depth 

and hydrodynamic conditions (Tang et al.  2020 ; Liu et al. 

 2020 ). Zirconium is preferentially concentrated in heavy 

minerals like zircon, typically found in shallow, high-energy 

environments. Rubidium, on the other hand, is enriched in 

light minerals such as clay, commonly deposited in deeper, 

low-energy settings (Ibach  1982 ; Dypvik and Harris  2001 ; 

Tenger et al.  2006 ). High Zr/Rb ratios indicate shallow, 

high-energy environments, while low ratios suggest deeper, 

low-energy environments (e.g., Omietimi et al.  2022 ; Wu 

et al.  2024 ). The low Zr/Rb ratios (0.07 to 0.49; ESM_1) 

for the Koum mudstones point to a deep-water, low-energy 

depositional environment. 

     5.3.3   Constraints from  δ  13 C VPDB  composition 

 The stable carbon isotope ratio,  δ  13 C, off ers a valuable tool 

for understanding past environments. By analyzing the car-

bon content of organic matter preserved in dark mudstones, 

we can reconstruct changes in climatic conditions over time 

(Gröcke  2002 ; Bocherens et al.  1993 ; Ratigan  2016 ). Plants 

utilize diff erent photosynthetic pathways to fi x carbon diox-

ide.  C 3  plants (including angiosperms and conifers), the 

fi rst photosynthetic land plants that date back to the Ordo-

vician, use the Calvin–Benson cycle to directly fi x  CO 2  and 

thrive in cooler, temperate regions (Robinson and Hesselbo 

1998). Their  δ  13 C values typically range from − 23 ‰ to 

− 34 ‰, with an average of − 27 ‰ (Gröcke  2002 ). In con-

trast,  C 4  plants, adapted to warmer conditions, employ the 

Hatch–Slack pathway to fi x  CO 2  as oxaloacetate, leading to 

 δ  13 C values between − 8 ‰ and − 16 ‰, with an average of 

− 13 ‰ (Spicer and Parrish  1986 ; Gröcke  2002 ; Robinson 

and Hesselbo  2004 ). 

 While  C 4  plants evolved in the Late Cretaceous, they only 

became ecologically signifi cant around 6–7 Ma ago (Gröcke 

 2002 ; Ehleringer et al.  1991 ). Crassulacean acid metabolism 

(CAM) plants, a specialized group adapted to arid environ-

ments, emerged around 20–30 Ma ago (Keely and Rundel 

 2003 ). Their unique photosynthetic strategy allows them to 

conserve water, but their isotopic signature is less distinct 

and can overlap with  C 3  and  C 4  plants. In the Miocene, the 

 δ  13 C values for wood samples show angiosperms with values 

from − 24 ‰ to − 30 ‰, while conifers exhibit a range of 

− 19 ‰ to − 27 ‰, highlighting the potential to link shifts 

in  δ  13 C values to changes in ancient vegetation types (Poole 

and Bergen  2006 ). These distinct isotopic ranges can be used 

to infer vegetation types within carbon sources in geological 

records. 

 The average  δ  13 C values of the Koum mudstones (− 28.2 

‰; Table  4 ) is consistent with the  δ  13 C values from a ter-

restrial organic carbon source, primarily from  C 3  plants 

(− 20 ‰ and − 34 ‰), which were dominant during the 

Cretaceous (Salazar-Jaramillo et al.  2016 ). The  δ  13 C values, 

plotted on a  δ  13 C VPDB  vs  δ  13 Catm diagram, indicate a mix 

of organic matter source, including  C 3  plants from temper-

ate grasslands and cooler, forested environments (Arens 

et al.  2000 ; Fig.  12 a). The slightly more negative  δ  13 C val-

ues (25.2 ‰ to − 35.2 ‰) for the Koum mudstones than 

expected for  C 3  plants suggest potential infl uence from fac-

tors such as fl uctuating  CO 2  levels and mixing with marine 

carbon sources in continental or marginal marine settings 

(Bocherens et al.  1993 ; Gröcke  2002 ). Environmental factors 

such as  CO 2  levels, salinity, and diagenetic alterations could 

  Fig. 12       Carbon isotope discrimination plots:  a   δ  13 C versus  δ  13 Catm (Arens et al.  2000 ),  b   δ  13 C values for the Koum mudstones compared to 

global values  
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also have impacted the  δ  13 C values of the Koum mudstones 

(Naidu et al.  1993 ).         

 The  δ  13 C values of the Koum mudstones are broadly simi-

lar to global  δ  13 C trends during the Cretaceous (Fig.  12 b). 

Although slightly more negative, the  δ  13 C values for the 

Koum mudstones are consistent with Aptian marine sedi-

ments from Hokkaido, Japan ( δ  13 C wood  values of − 25.4‰ to 

− 21.8‰), the Maastrichtian Cantwell Formation ( δ  13 C bulk  

values of − 22.95‰ to − 27.10‰ and  δ  13 C wood  values of 

− 22.42‰ to − 27.85‰), the Cenomanian Dakota Forma-

tion of Nebraska ( δ  13 C bulk  values of − 24‰ to − 23‰), 

and the Cretaceous mudstones at Slope Mountain, Alaska 

( δ  13 C bulk  of − 22. 5‰ to − 26.1‰), suggesting similar 

paleoenvironmental conditions with signifi cant terrestrial 

 C 3  plant input (Fig.  12 b; Ando  2002 ; Gröcke et al.  2006 ; 

Salazar-Jaramillo et al.  2016 ; Ratigan  2016 ). 

 The comparatively more negative  δ  13 C excursions 

observed in the Koum mudstones, especially in the Kali 

sample KAL002 (− 35.2‰) and the Mayo Gaba samples 

KAL011 (− 30.0‰), KAL012 (− 29.7‰), and KAL013 

(− 31.0‰) (Table  4 ), may be linked to fl uctuations in atmos-

pheric  CO 2  levels or increased carbon burial events (Spicer 

and Parrish  1986 ; Naidu et al.  1993 ; Gröcke et al.  2002 ). 

These lower  δ  13 C values could indicate periods of reduced 

 CO 2  or increased terrestrial organic matter input, potentially 

refl ecting environmental stress. Overall, the  δ  13 C values of 

the Koum mudstones suggest a terrestrial, fl uvial-deltaic 

environment with signifi cant contributions from  C 3  plants 

(Fig.  12 b). 

     5.3.4   Constraints from  δ  18 O VSMOW  and  δ  2 H VSMOW  
composition 

 Stable hydrogen and oxygen isotope ratios in clastic sedi-

ments are valuable tools for reconstructing past environmen-

tal and climatic conditions (e.g., Savin and Epstein  1970 ; 

Murray and Janssen  1984 ; Savin and Lee  1988 ; Santos et al. 

 2007 ). These isotopes, present in various water sources (e.g., 

connate water, seawater, meteoric water, organic water, met-

amorphic water, and igneous water), can signifi cantly infl u-

ence the isotopic composition of sediments (Morad et al. 

 2003 ; Middleton et al.  2015 ; Bauer et al.  2016 ; Xi et al. 

 2019 ). 

 Connate water is water trapped within sediments at the 

time of deposition. Seawater and meteoric water, with 

known isotopic compositions, are common reference stand-

ards. Seawater exhibits  δ  2 H and  δ  18 O values of 0‰ relative 

to the V-SMOW (Morad et al.  2003 ), while meteoric water 

exhibits  δ  2 H and  δ  18 O values that vary systematically with 

latitude and altitude, decreasing at higher latitudes and alti-

tudes (Fig.  13 ). Evaporated seawater, formed through evapo-

ration, undergoes a complex isotopic evolution, becoming 

enriched in both  δ  1  8 O and  δ  2 H, up to a salinity four times 

that of seawater (Fig.  13 ; Morad et al.  2003 ; Xi et al.  2019 ).         

 Organic water, formed through processes like kerogen 

maturation, microbial fermentation, and petroleum decom-

position, has a wide range of isotopic signatures with  δ  2 H 

values typically ranging from − 150‰ to − 90‰, and  δ  18 O 

values varying from − 7‰ to 20‰ (Worden et al.  1996 ; Xi 

et al.  2019 ; Morad et al.  2003 ). In contrast, metamorphic and 

igneous fl uids are generally enriched in  δ  18 O but depleted 

in  δ  2 H (Fig.  13 ). The  δ  18 O values for these waters range 

from 6‰ to 20 ‰ V-SMOW, while the  δ  2 H values vary 

from − 55‰ to 6‰ for metamorphic waters and − 70‰ to 

− 40‰ V-SMOW for igneous waters (Xi et al.  2019 ). 

 The  δ  18 O values of pore water in sedimentary basins 

are infl uenced by various factors during burial diagenesis, 

including changes in the geothermal gradient, hydration of 

volcanic materials, oil emplacement, mineral dissolution 

and precipitation, and fl uid infl ux (Ayalon and Longstaff e 

 1988 ; Williams et al.  1997 ; Noh and Lee  1999 ; Marchand 

et al. 2002; Sample et al.  2017 ; Xi et al.  2019 ). Water–rock 

reactions and increased temperatures can lead to  δ  18 O 

enrichment, while meteoric water infi ltration can gradually 

deplete  δ  18 O signatures (Haszeldine et al.  1992 ; Marchand 

et al. 2002). Additionally, the introduction of deep fl uids 

can enrich pore water  δ  18 O signatures (Sample et al.  2017 ). 

 The wide range of  δ  18 O (3.6‰ to + 24.9‰) and  δ  2 H 

(−  104‰ to −  50‰) values for the Koum mudstones 

(Table  4 ) suggests interaction with diff erent fl uid sources, 

indicating variable climatic and hydrological conditions 

during deposition. The  δ  18 O values (+ 3.6‰ to + 24.9‰) 

suggest a provenance of chemically weathered inter-

mediate igneous rock, with subsequent interaction with 

  Fig. 13       Bivariate plot of  δ  18 O versus  δ  2 H values for the Koum mud-

stones, showing the diff erent types of diagenetic fl uids involved in 

their formation (Morad et al.  2003 )  
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magmatic–metamorphic and meteoric fluids (Table   4 , 

Fig.  13 ). 

 Clastic sediments formed in high-latitude or high-

altitude regions, where meteoric water is depleted in  δ  2 H 

and  δ  18 O signatures, typically indicate lower formation 

temperatures (Hassanipak and Eslinger  1985 ; Mizota and 

Longstaff e  1996 ). The average  δ  2 H (− 68 ‰;  n  = 15) and 

 δ  18 O (+ 12.2‰;  n  = 15) values for the Koum mudstones 

suggest a warm, equatorial-like climate during the Creta-

ceous, similar to the Cretaceous clays from the Lower Benue 

Trough of Nigeria, with average  δ  2 H and  δ  18 O values of 

– 59.66‰ and + 18.5‰, respectively (Bolarinwa et al. 

 2019 ). This contrasts with the more depleted average  δ  2 H 

(– 101.10‰) and  δ  18 O (+ 8.03‰) values observed in high-

latitude regions, such as the eastern Australian clays (Bird 

and Chivas  1988 ). 

 In the  δ  2 H versus  δ  18 O diagram (Savin and Epstein  1970 ; 

Sheppard and Gilg  1996 ), the Koum mudstones largely clus-

ter within or near the metamorphic and igneous fi elds, with 

some samples trending towards the altered meteoric water 

fi eld (Fig.  13 ). The distribution of the samples is consist-

ent with interactions involving magmatic, metamorphic 

and meteoric waters that has been isotopically modifi ed 

(Fig.  13 ). The spread of some samples along the kaolinite 

weathering line hints at the infl uence of kaolinite forma-

tion, and weathering processes aff ecting the isotopic signa-

tures (Fig.  13 ). The particularly low  δ  2 H values in the Mayo 

Gaba samples KAL011 (− 104‰), KAL012 (− 100‰), and 

KAL013 (− 99‰) (Table  4 ) may suggest prolonged expo-

sure to meteoric water or mixing with fl uids from a source 

with extremely low  δ  2 H signatures (Fig.  13 ). 

 The higher  δ  18 O values particularly in the Mayo Gaba 

samples KAL011 (+ 24.9‰) and KAL013 (+ 22.3‰) 

(Table  4 ) might indicate a stronger infl uence from deep, 

thermally altered fl uids or prolonged burial diagenesis. The 

presence of certain minerals, such as analcine (1.9%–23.3%), 

ankerite (~ 10.5%) and dolomite (16.1%–19.8%) in some 

of the studied samples (Table  2 ; Fig.  4 ), further supports 

low-grade metamorphism and/or hydrothermal alteration. 

Overall, the variations in  δ  18 O and  δ  2 H values for the Koum 

mudstones suggest a complex history of hydrothermal, 

weathering, and possible diagenetic processes, involving 

meteoric fl uids. 

       6   Tectonic setting of source area 

 The geochemical composition of mudstones can provide 

insights into the tectonic setting of their source areas. By 

analyzing major (e.g.,  K 2 O,  Na 2 O,  Al 2 O 3 ,  SiO 2 ) and trace 

elements (e.g., Th, La, Zr, Sc), we can distinguish between 

diff erent tectonic settings (Roser and Korsch  1986 ; Sun et al. 

 2012 ; Bhatia  1983 ; Bhatia and Crook  1986 ; Pearce and Peate 

 1995 ; Verma and Armstrong-Altrin  2013 ; Wu et al.  2024 ). 

The geochemical data for the Koum mudstones, when plot-

ted on the  K 2 O/Na 2 O versus  SiO 2  discrimination diagram 

after Roser and Korsch ( 1986 ), suggest a complex tectonic 

setting, likely involving active continental margin and island 

arc environments (Fig.  14 a). However, on the  SiO 2 /Al 2 O 3  vs. 

 K 2 O/Na 2 O diagram of Maynard et al. ( 1982 ), most of the 

samples align with arc to active continental margin settings, 

with one sample suggesting a passive margin environment 

(Fig.  14 b).         

 Trace element discrimination diagrams, such as the La 

versus Th and La-Th-Sc ternary diagrams of Bhatia and 

Crook ( 1986 ), are tools for determining the tectonic envi-

ronment of source areas. When plotted on these diagrams, 

the Koum mudstones cluster near the fi elds associated with 

  Fig. 14       Major element discrimination plots showing the tectonic setting of the Koum mudstones:  a   SiO 2  versus  K 2 O/Na 2 O plot after Verma and 

Armstrong-Altrin ( 2013 ), and  b   K 2 O/Na 2 O versus  SiO 2 /Al 2 O 3  plot after Maynard et al. ( 1982 ).  ACM  active continental margin,  ARC   island arc 

margin,  A1  arc,  A2  evolution arc,  PM  passive margin  
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continental island arcs and ocean island arcs, suggesting an 

arc-related origin (Fig.  15 a). However, the La-Th-Sc ternary 

diagram indicates an active continental margin (ACM) and a 

passive continental margin (PM) tectonic setting (Fig.  15 b). 

These fi ndings support a continental arc setting as the pri-

mary source for the Koum mudstones, with potential contri-

butions from ocean island arc environments. This interpreta-

tion aligns with the fi ndings of Ngo Mandeng et al. ( 2024a , 

 b ), who likewise proposed a continental arc system as the 

dominant source for the Koum basin deposits, with second-

ary contributions from rift and oceanic island arc systems.         

     7   Conclusions 

 This study presents the fi rst integrated mineralogical, bulk-

rock geochemical, and stable isotope (C–O–H) dataset for 

the Cretaceous dark-gray mudstones of the Koum Basin, 

northern Cameroon, providing new insights into the paleoen-

vironment, paleovegetation, paleoclimate, and tectonic evo-

lution of this underexplored segment of the Upper Benue 

Trough. The following are some key fi ndings of this study.

   1.      The mineralogical composition of the Koum mudstones 

indicates that they are predominantly composed of phyl-

losilicates, feldspars, carbonates, and minor iron oxides, 

refl ecting a complex interplay of depositional processes 

and post-depositional alterations. The presence of altera-

tion minerals such as analcime, dolomite, and ankerite 

suggests overprinting by low-grade metamorphism and/

or hydrothermal activity.   

  2.      Geochemically, the mudstones point to a continental 

crustal source with an intermediate igneous provenance, 

deposited in a dynamic basin environment characterized 

by fl uctuations in salinity (brackish to saline), redox con-

ditions (oxic to anoxic), and climatic conditions ranging 

from humid to arid. While the major element ratios (e.g., 

 SiO 2  vs.  Al 2 O 3  +  K 2 O +  Na 2 O) indicate a dominant 

semi-arid regime, the Sr/Cu and C-values suggest alter-

nating humid and arid conditions.   

  3.      The  δ  13 C signatures for the mudstones suggest an 

organic carbon source, primarily from  C 3  plants, indic-

ative of a terrestrial, fl uvial-deltaic environment. The 

slightly more negative  δ  13 C excursions exhibited by 

some samples refl ect fl uctuations in atmospheric  CO 2  

levels or increased terrestrial organic matter input.   

  4.      The  δ  18 O and  δ  2 H values of the Koum mudstones sug-

gest a complex history of fl uid-rock interactions within 

the Koum basin, involving meteoric water and mag-

matic–metamorphic fl uids under a warm, equatorial-like 

climate.   

  5.      Tectonic setting discrimination diagrams suggest a con-

tinental arc environment for the Koum basin, with poten-

tial contributions from oceanic island arc and passive 

continental margin settings.     
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