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Abstract The wadi dahab delta is in a dry, arid coastal

zone within Egypt’s south Sinai Peninsula’s eastern por-

tion. The primary water source is the Quaternary coastal

alluvial aquifer. The groundwater salinity varies from 890

to 8213 mg/L, with a mean value of 3417 mg/L. The dis-

solved major ions have been used to calculate the seawater

mixing index (SWMI) using a linear equation that dis-

criminates the groundwater mostly affected by water–rock

interaction (SWMI 1[) and other samples mixed with

Seawater (SWMI \ 1). The isotopic composition of

groundwater for specifically chosen groundwater samples

ranges from −0.645‰ to+5.212‰ for δ18O and from −
9.582‰ to+22.778‰ for δ2H, where the seawater

represented by a Red Sea water sample (δ18O+1.64‰

−δ2H+9.80‰) and reject brine water are considerably

enriched the isotopic groundwater values. The geochemical

NETPATH model constrained by the dissolved significant

ions, isotopes, and the rock aquifer forming minerals as

phases indicate the mixing percent with the seawater ran-

ges from 9% to 97% of seawater from 91% to 3% of

original recharge water. According to the SEAWAT 3-D

flow models, seawater has penetrated the Northeastern

Dahab delta aquifer, with the intrusion zone extending

1500 m inland. The salt dissolution, upwelling of saline

water, recharge from the upstream mountain block, and

seawater encroachment are the primary aspects contribut-

ing to the deterioration of groundwater quality. These

findings may have significance for effective groundwater

withdrawal management in arid locations worldwide with

similar hydrogeological systems.

Keywords Groundwater geochemistry · Seawater

intrusion · Solute transport · SEAWAT

1 Introduction

Groundwater in arid coastal aquifers can be intensely

vulnerable to seawater intrusion and contamination. The

limited freshwater resources in arid regions can lead to

excessive pumping of groundwater, which can cause sea-

water to infiltrate the aquifer and deteriorate the salinity of

the freshwater supply. Furthermore, rising sea levels and

climate change may exacerbate the issue of seawater

encroachment in coastal arid aquifers (Eissa 2018).

Effective management and conservation of these ground-

water supplies are essential to ensuring a sustainable water
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supply for these populations. Due to overpopulation, the

Middle East, North Africa, and Egypt are facing freshwater

scarcity, especially in the arid coastal regions. Dahab is a

town in Egypt’s south Sinai Peninsula, at the downstream

portion of the Dahab Watershed along the Gulf of Aqaba

coastline (Benaafi et al. 2023; Alshehri et al. 2021). The

prevalence of aridity and consequent decrease in annual

rainfall (The local rainfall ranges from 10.3 to 25 mm/year)

leads to the exploitation of all existing water resources

(Omran 2020). Groundwater is vital in supporting the life

of the local inhabitants and agriculture as groundwater is

considered the only source easily extracted from the coastal

shallow Quaternary aquifer (Tantawi 2007). The scarcity of

natural groundwater replenishment in arid coastal regions

creates hydrogeological problems in coastal aquifers

worldwide (Prusty and Farooq 2020; Sadeghi and Hosseini

2023). The groundwater over-pumping leads to a break in

the natural balance between the groundwater and the sea-

water, leading to groundwater deterioration (Gopinath et al

2019; Maurya et al 2019; Kumar et al 2022).

Recently, the increased development activities in the

Delta Dahab basin’s coastal areas, situated along the coast

of Aqaba in Southern Sinai, Egypt, have necessitated an

increase in demand for urban water supply (Eissa et al

2013). Groundwater salinization is a significant problem

threatening groundwater characteristics in coastal arid

aquifers (Vengosh 2013; Gomez et al 2021). In coastal arid

aquifers, the groundwater quality deteriorated mainly due

to evaporation, interaction with aquifer matrix, dissolution

of minerals, redox, and mixing with Seawater (Richter and

Kreitler 1993). The groundwater in Delta Dahab is con-

sidered the primary source for feeding the reverse osmosis

(RO) desalination plants. The groundwater in Delta Dahab

is mainly exploited from the coastal shallow unconfined

Quaternary aquifer (Abdel-Shafy and Kamel 2016). The

Quaternary aquifer comprises brackish and saline ground-

water types. The brackish groundwater is a thin layer

floating over deeper dense high, saline groundwater.

Therefore, high groundwater abstraction leads to ground-

water deterioration and salinization (Eissa et al 2016a, b).

This research aimed to optimize the groundwater

pumping and delineate the brackish groundwater zones in

the Quaternary aquifer to minimize the desalination cost.

Therefore, an attempt has been made in the Dahab delta

aquifer using logical inputs of hydrogeological and

hydrochemical data sets to understand the groundwater

flow hydrodynamics well and consequently manage the

groundwater abstraction and delineate the brackish zones

(Abd-Elhamid 2011; Prama et al 2020; El-Rawy et al

2023). Due to the shortage of freshwater supply, desali-

nation plants are crucial to provide the necessary water as

seawater/groundwater desalination is the primary

alternative water resource (Abdel-Wahaab and El-Shazly

2007; Kessasra et al 2021; Elsaie et al 2022).

Hydrogeochemical characterization of groundwater has

been investigated using chemical ratios, seawater mixing

index (SWMI), and saturation indices (SI) for the dissolved

minerals in the groundwater. The geochemical ion ratios

were also used to identify processes leading to groundwater

salinization (Cartwright et al 2009; Gopinath et al 2019;

Ben Ammar et al. 2020). The isotopic parts of groundwater

(δ18O and δ2H) were also used to delineate the primary

source(s) of subsurface recharge (Mazor 2003; Isawi et al

2016) and distinguish between processes such as evapo-

ration, mineral dissolution, and mixing with the upconing

of seawater and brine injection comes from the desalination

plants (Clark and Fritz 1997). The geochemical NETPATH

mixing model has been used to define the ratios mixing

between groundwater and saltwater using the input of

geochemical groundwater and isotope data. As a result,

geochemical and stable isotopic data improve our knowl-

edge of the groundwater hydrological system. Additionally,

to understand groundwater flow hydrodynamics, regulate

groundwater abstraction, and delineate brackish zones, a

variable-density SEAWAT groundwater flow model is

used (Abd-Elaty et al 2021; El Shinawi et al 2022). The

SEAWAT, a miscible flow and transport model, has been

widely used to forecast inland seawater passage and detect

saltwater intrusion in coastal arid and semi-arid environ-

ments. (Guo and Langevin 2002).

The coastal aquifer in the Dahab Delta is a crucial

source of potable water, but various water crises, such as

declining water levels and groundwater salinization, have

troubled it. The aquifer has not been extensively researched

due to the absence of comprehensive geochemical,

hydrogeological, and sample data resolution. Conse-

quently, the primary goals of this research are to employ

multi-chemo-isotope data to examine groundwater salin-

ization in the Dahab delta aquifer. Furthermore, this study

represents the first attempt to integrate isotopic and geo-

chemical interaction models into a contaminant transport

model to create a comprehensive model of the coastal

aquifer.

2 Study area

The Delta Wadi Dahab is about 40 km2 in total area and

lies on the Gulf of Aqaba western portion (Fig. 1). The area

is located between the longitudes 28°28′ 01′′ and 28°31′02′′
E and latitudes 34°32′01′′ and 34°28′05′′ N and is part of an

arid zone. The recorded daily temperatures range from 30

to 38 °C and the annual rainfall is approximately 35 mm

(Danin 1983; JICA 1999). Significant precipitation infre-

quently occurs due to convective clouds with a limited
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horizontal expanse (Abuzied and Mansour 2019). Regard-

less of the general aridity and low rainfall, hot

temperatures, and evaporation rate of the study region, it is

frequently prone to intense rainstorms that produce flash

floods (Khedr et al 2017).

The relief is critical in increasing the quantity of pre-

cipitation. During the summer months (April to August),

relative humidity varies between 53% and 60%, while in

the winter (November to January), it ranges between 53%

and 65% (Omran 2013). The Dahab basin’s western

catchment area is 29.8%, with precipitation exceeding 50.5

mm/year. This watershed includes Saal, Nasab, and Rimthy

sub-basins and gets approximately 3.5 million m3/year with

rainfall varying from 20 to 33 mm.

Several studies have determined the different types of

landforms in the Gulf of Aqaba (Issawi et al 1998; Hassan

et al 2005, 2007). Geomorphology can study everything

from basement mountainous terrain to limestone flat-top-

ped plateaus, alluvial fans, coastal plains, and network

drainage units. The W. Dahab basin is part of the Arbo-

Nubian Shield’s ancient Archean Triangle. The Dahab

basin’s geological groups include igneous, metamorphic,

and sedimentary rocks. (Hume 1906; El Shafei et al 1992;

Zalata et al 1997; El Masry et al 2003; Ashmaway et al

2000). Most of the upper watershed comprises Precambrian

metamorphic and igneous rocks and Cambrian to Quater-

nary sedimentary units (Said 1962; Soliman 1986; Kora

and Genedi 1995; Hegazi 2006).

The Delta is an alluvial fan made up of Quaternary

terraces and wadi fills. Alluvial fans comprise boulders,

gravel, sand sizes, silts, and clays (Shabana 1998; El Kiki

et al 1992). These deposits formed an important aquifer in

the examined region because of their exceptional hydraulic

features. The stream channel floors are covered in varied

thicknesses and textures of alluvial deposits, where alluvial

deposits’ thickness is 50 m. A significant portion of this

rainfall was conveyed as surface runoff to the Gulf of

Aqaba via the significant streams, considered the primary

source of groundwater replenishment (Shalaby 2017).

Additionally, upstream precipitation over basement rocks

flows downstream, recharging the alluvial aquifers (Issar

and Gilad 1982). The Quaternary groundwater has varied

thicknesses and a lens shape above mean sea level (El-

Refaei 1992; Shendi and El Rayes 1992; Oada 1995). The

Fig. 1 Location map of the

delta wadi Dahab is located on

the western side of Gulf of

Aqaba
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thickness of the body is highest in the west and gradually

reduces as it travels east (Shendi et al 1997; Shendi and

Oada 1999). The transmissivity of the aquifer varies in

response to variations in lithology. The aquifer has a

moderate to high potential and storativity of around 9.129

10−2, which is well within the limits of an unconfined

aquifer (El-Refaei 1992; El Rayes 1992). According to the

water table map, the flow pattern from the fracture base-

ment outcrops flows northwest to the southeast or towards

the Gulf of Aqaba (Shabana 1998). The thickness of the

groundwater body ranges from 4.85 m to 0.86 m, with an

average of 3 m (El-Refaei 1992), and the aquifer material’s

specific yield is 15%.

3 Materials and methods

One field trip conducted in July 2019 collected forty-four

water samples and ten rock samples from examining rock-

drilled wells representing the aquifer located at the Delta

Wadi Dahab basin along the Gulf of Aqaba representing

the aquifer. Each water sample was filled into two plastic

containers; one was a standard sample for determining

chemical components, and the other was acidified with

nitric acid before heavy metals analyses. Then they were

labeled according to their sampling number, GPS reading

and well serial number, and various field measurements.

3.1 Groundwater analyses

The groundwater samples were collected during the field

trip on July 2019 and analyzed at the Desert Research

Centre (DRC) laboratories based on methods reported by

Rainwater and Thatcher 1960; Fishman and Friedman

1985; and the American Society for Testing and Materials

ASTM 2002).

The electrical conductivity (EC) of groundwater, pH,

and salinity (TDS) were measured during the field trip

(Table 1). The EC (S/cm) was tested using a Thermo

Electron Corporation Orion 150 A+EC meter model.

A Jenway 3510 pH meter from the United Kingdom was

used during the field trip. Ca2+, Mg2+, Na+, K+, SO4
2−,

and chloride were measured using IC-Chromatography

(Thermo Scientific Dionex ICS-1100 Ion Chromatography

System) (Table 1). The alkalinity has been determined

using titration against H2SO4
2− using phenolphthalein and

methyl orange as indicators (Hem 1985). Thermo Electron

Company’s Orion EA 940 ion selectivity meter measured

bromide (Br−) and iodide (I−) levels.

3.2 Water extract and rock samples analyses

Ten rock samples were collected from the outcrops of

basement rocks to determine the concentration of major

oxides (Table 1). The rock samples were transported to a

powdered grinder, and a (1:1 wt/wt) water extraction was

performed to determine the number of anions and cations.

Heavy metals were extracted from digestion samples using

a microwave digestion system with added strong acids. Ten

rock samples were analyzed using the x-ray fluorescence

(NEX CG II, Cartesian Geometry-EDXRF) to determine

the major oxides ratios (Table 2).

3.3 NETPATH model

The geochemical analyses of major ions (Table 1), x-ray

fluorescence data results for the collected rock samples

(Table 2), and the mineralogical composition embedded in

the aquifer matrix are considered as the primary data for

geochemical NETPATH model. Based on the data used in

the NETPATH-WIN model the saturation (SI) of minerals

has been estimated (Plummer et al. 1992). The SI of

minerals was calculated (SI=log (IAP/KT), where IAP is

the ion activity product, and K is the equilibrium constant

at a given temperature (T) (Garrels and Mackenzie 1967)

(Table3).

3.4 Saline water mixing index (SWMI)

An index known as the Saline Water Mixing Index

(SWMI) was proposed to provide numerical evaluations of

the proportionate influence of seawater mixing. The SWMI

was determined using the equation described by Park et al.

2005. Where;

SWMI ¼ a�CNa
TNa

þ bx
CMg

TMg
þ c � CCl

TCl
þ d � CSO4

TSO2

Park et al (2005) calculated the constant factors a, b, c,

and d from the concentrations of sodium, magnesium,

chloride, and sulfate in seawater worldwide. Ti displays the

threshold calculated values for various ions in a specific

location. These values are discovered by inspecting

cumulative probability curves. Ci denotes the ion concen-

tration in milligrams per liter for dissolved ions (Ca2+, Mg2

+, Na+, Cl−, and SO4
2−). A SWMI value greater than one

indicates that mixing with seawater may have impacted

groundwater, while SWMI\1 indicates freshwater (Mon-

dal et al. 2011).
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3.5 Solute transport model (SEAWAT)

To evaluate the encroachment of seawater in the porous

aquifer media of the delta, the SEAWAT software model

was applied to solve density-dependent/solute transport

flow equations developed by Guo and Langevin (2002),

which combines the MODFLOW and MT3DMS solute

transport equations (Harbaugh et al 2000; Zheng and Wang

1999). In this research the historical records of ground-

water level and chloride concentration as a good

conservative ion have been used to calibrate the SEAWAT

model.

4 Result and discussion

4.1 Groundwater geochemistry

Groundwater salinity is represented by the sum of the

dissolved major, minor, and trace elements in mg/L. The

interaction between the groundwater and the mineral

embedded into the aquifer matrix can significantly impact

the solute concentration. The groundwater salinity of the

Quaternary aquifer varies from 890 mg/L to 8213 mg/L,

with an average of 3417 mg/L (Table 1). While the salinity

of the six samples feeding the reverse osmosis desalination

plant ranges from 33,500 mg/L to 53,200 mg/L.

Based on the salinity level, groundwater is classified

into fresh, brackish, or saline based on total dissolved

solids (TDS) levels (Chebotarev 1955). The bulk of

groundwater samples in the research region is classed as

saline (4%) or brackish (92%), with a minority classified as

freshwater (4%). The majority of salty water samples are

found along the shore. Subsurface seepage from fractured

basement rocks is the recharge source for the coastal

alluvial aquifer in Delta wadi Dahab. High salinity samples

reflect the impact of leaching and dissolving of marine

origin deposits and mixing with seawater.

In almost all groundwater samples in the investigated

region, major ions. Calcium and magnesium are essential

components of carbonate minerals (limestone and dolo-

mite), and they dissolve in water as alkaline earth metals.

They are commonly found in natural water as dissociated

bivalent ions and are responsible for water hardness. The

calcium concentration in the alluvium aquifer varies from

66.56mg/L to 873.6 mg/L with an average value of 418.1

mg/L, while the magnesium concentration ranges from

5.05 to 1453.14 mg/L with an average value of 260.4 mg/L.

The water–rock interplay with a carbonate-rich aquifer

matrix and/or mixing with saltwater are depicted in the

figure (Vengosh and Rosenthal 1994; Oliva et al 2004).

Sodium and potassium are the most common members of

the periodic table’s alkali-metal group. The main sodium

and potassium sources are sedimentary rocks such as clay

minerals and evaporate. The high solubility of sodium and

potassium ions and their restricted sportive bonding to clay

minerals and other adsorbents significantly enriched the sea

and evaporates deposits (Matthess 1982). The sodium

concentration in natural water is typically less than 200 mg/

L, reaching approximately 10,000 mg/L in saltwater and

25,000 mg/L in brines (Hem 1985).

The monovalent ion (Na+) ranges from 259 to 18,200

mg/L, with an average value of 1591 mg/L. Bicarbonates

and carbonates are commonly found in natural groundwa-

ter due to weathering and decomposition of carbonate

minerals and CO2, which aids in dissolving these elements

(Rainwater and Thatcher 1960). Bicarbonate concentra-

tions in groundwater vary from 48.8 to 207 mg/L, with a

Table 2 The X-ray fluorescence data for rock samples in the study area

Rock type Name SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Cl SO3 LOI

Felsic 1 87.0 0.7 10.6 0.3 \0.01 0.1 0.2 \0.01 0.1 0.1 0.0 0.0 0.9

1\ 66.1 2.8 17.7 9.5 \0.01 0.1 1.2 \0.01 0.1 0.1 \0.01 \0.01 2.3

3 75.8 0.1 11.7 2.4 0.0 0.2 0.9 1.9 5.9 \0.01 \0.01 \0.01 0.6

5 68.7 0.6 13.0 6.1 0.2 0.2 2.1 2.1 6.1 \0.01 \0.01 \0.01 0.8

Average 74.4 1.03 13.24 4.56 0.10 0.16 1.11 2.03 3.02 0.10 0.02 0.04 1.14

Mafic 2 60.2 1.3 12.4 10.3 0.2 1.3 5.7 1.3 5.9 0.4 \0.01 \0.01 0.7

6 31.9 2.7 12.6 25.8 0.2 4.3 9.6 0.6 1.4 0.3 \0.01 \0.01 10.1

4 51.0 0.9 11.7 15.9 0.3 3.2 10.1 1.4 2.2 0.2 0.1 0.2 2.3

Average 47.7 1.62 12.25 17.34 0.24 2.94 8.47 1.09 3.17 0.27 0.11 0.18 4.36

Intermediate 7 62.2 0.8 11.7 10.6 0.2 \0.01 3.4 1.3 6.8 0.2 \0.01 \0.01 2.7

8 33.9 3.4 11.4 36.9 0.4 0.3 5.1 \0.01 2.1 1.6 0.1 \0.01 4.5

10 68.3 0.5 12.5 3.9 0.0 \0.01 1.3 0.6 10.6 \0.01 0.0 \0.01 2.0

Average 54.8 1.54 11.87 17.12 0.24 0.27 3.28 0.93 6.50 0.91 0.06 \0.01 3.05

123

Acta Geochim (2024) 43:16–3922



Table 3 Mineral saturation indices for phases in NETPATH geochemical models

Aquifer Well No Cal Dol Gyp SiO2 Qz Al

(OH)3

Chrt Ca-

Mont

Ilt Hal

Quaternary 1 0.36 1.44 −0.26 −0.11 1.16 −1.79 9.28 5.04 5.78 −0.50

3 0.46 1.37 −0.35 −0.31 0.96 −1.88 7.69 4.09 4.97 −0.34

4 1.05 2.93 −0.30 −0.50 0.77 −2.57 15.18 2.06 3.53 −0.28

6 0.85 0.60 −0.75 −0.51 0.76 −1.87 0.25 3.41 3.14 −2.37

7 0.97 0.97 −0.51 −0.59 0.68 −2.18 3.80 2.52 2.55 −2.41

8 0.99 1.29 −0.48 −0.60 0.67 −1.96 3.03 2.91 2.97 −2.36

9 0.11 −0.13 −0.82 −0.68 0.59 −1.01 −3.59 4.50 3.83 −2.48

10 0.96 1.46 −0.60 −0.64 0.63 −1.88 3.13 2.89 2.91 −2.26

11 0.91 2.48 −0.13 −0.49 0.78 −2.14 11.54 2.97 4.19 −0.05

12 0.59 1.88 −0.24 −0.75 0.52 −2.06 9.87 2.17 3.26 −0.31

14 0.59 0.41 −0.57 −0.29 0.98 −1.87 3.47 4.23 3.94 −2.74

15 0.53 0.54 −1.04 −0.33 0.94 −2.13 4.06 3.47 3.33 −3.59

16 0.32 0.10 −0.53 −0.38 0.89 −1.68 2.86 4.29 3.94 −2.54

17 0.27 −0.17 −0.46 −0.43 0.84 −1.58 1.25 4.32 3.81 −2.62

18 0.44 0.30 −0.57 −0.43 0.84 −1.87 3.68 3.70 3.50 −2.59

19 0.25 0.12 −0.73 −0.48 0.79 −1.55 0.87 4.14 3.77 −2.79

20 0.25 −0.28 −1.49 −0.67 0.60 −1.92 −0.54 2.63 2.31 −3.79

22 0.39 0.30 −0.71 −0.40 0.87 −1.65 1.38 4.24 3.88 −2.92

23 0.64 1.07 −0.08 −0.39 0.88 −1.48 3.21 4.65 4.48 −1.97

24 0.24 0.09 −0.55 −0.56 0.71 −1.56 1.48 3.85 3.37 −2.65

25 1.11 1.86 −0.78 −0.41 0.86 −2.35 7.47 2.81 2.96 −2.69

26 0.09 −0.24 −0.52 −0.48 0.79 −1.48 0.84 4.30 4.08 −2.32

27 0.34 0.29 −0.91 −0.54 0.73 −1.36 −1.35 4.28 3.96 −3.21

28 0.12 −0.14 −0.74 −0.55 0.72 −1.35 −0.88 4.27 3.80 −2.99

29 0.41 0.43 −0.54 −0.50 0.77 −1.66 2.24 3.88 3.66 −2.60

30 0.02 −0.19 −0.52 −0.62 0.65 −1.36 −0.14 4.00 3.52 −2.82

38 0.18 −0.06 −0.64 −0.58 0.69 −1.47 0.79 3.96 3.40 −2.69

39 0.07 −0.24 −0.57 −0.60 0.67 −1.28 −1.05 4.26 3.54 −2.46

40 0.17 −0.26 −0.38 −0.63 0.64 −1.56 0.35 3.60 3.27 −2.55

41 0.11 −0.49 −0.63 −0.59 0.68 −1.27 −2.27 4.35 3.56 −2.58

42 0.63 1.94 −0.06 −0.36 0.91 −1.67 8.20 4.38 5.09 −0.46

44 −0.17 −0.36 −0.28 −0.54 0.73 −1.46 1.89 4.11 3.60 −2.97

Rainwater − 2.314 −2.31 −5.35 −3.51 – – – – – –

Seawater 0.176 0.18 1.38 −0.61 −2.08 – – – – –

Reject water 2 0.52 – −0.24 −0.25 1.02 – – – – −0.34

5 0.96 2.79 −0.24 −0.52 0.75 – – – – −0.13

13 0.58 1.92 −0.01 −0.64 0.63 – – – – −0.01

43 0.68 1.98 0.10 −0.18 1.09 −0.92 8.81 6.76 7.25 −0.30

Rock

extract

1 −0.09 −0.64 −1.81 −1.18 0.09 −2.19 1.52 0.24 0.40 −5.84

2 0.09 −0.47 −1.94 −1.35 −0.08 −2.09 −1.00 −0.20 −0.23 −5.78

3 0.38 0.39 −2.46 −1.15 0.12 −3.00 5.98 −1.37 −0.29 −5.38

4 0.12 −0.68 −0.98 −1.04 0.22 −2.11 0.39 0.92 1.02 −4.72

5 0.36 0.30 −2.20 −1.34 −0.07 −2.79 4.06 −1.62 −0.92 −5.49

6 0.41 −0.14 −0.44 −1.17 0.10 −1.95 −0.48 0.83 0.86 −4.63

7 0.29 0.00 −1.23 −1.57 −0.30 −2.21 0.59 −1.22 −0.94 −4.69

8 0.14 −0.17 −2.41 −1.25 0.02 −2.59 2.60 −0.91 −0.39 −5.49

9 0.13 −0.76 −0.23 −1.24 0.03 −1.85 −1.45 0.79 0.91 −3.47

10 0.07 −0.39 −0.38 −0.96 0.31 −1.25 −3.09 3.01 2.72 −4.35

Cal. Calcite; Chrt. Chlorite; Gyp. Gypsum; Ilt. Illite; Qz. Quartz; Ca- mont. Ca-Montmorillonite; Hal. Halite; Dol. Dolomite
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mean value of 106.99 mg/L. Gypsum and anhydrite are the

most significant contributors to sulfate in natural water

(Hem 1985). Additional sulfate addition to groundwater

occurs due to the breakdown of organic compounds in the

soil and the addition of leachable sulfates in fertilizers

(Omar 2008). The sulfate concentration in the Alluvium

aquifer varies from 179.06 to 7266.4 mg/L, with a mean

value of 1693 mg/L. The aquifer’s comparatively low

sulfate concentrations (less than 2000 mg/L) result from

water–rock interaction-induced leaching and dissolution.

Higher sulfate concentrations, on the other hand, are pri-

marily due to mixing with saltwater. The leaching of

marine deposits and seawater intrusion are the two most

significant sources of chloride in groundwater. Chloride

can give drinking water a salty flavor and may hasten the

corrosion of metals used in the water supply system, par-

ticularly when combined with calcium and magnesium.

The chloride concentration in samples in the alluvium

aquifer varies from 333.2 to 25,906.3 mg/L, with a mean

value of 4930.06 mg/L. High chloride amounts are pri-

marily due to the leaching and dissolution of oceanic

origin. Overpumping groundwater in coastal aquifers

lowers groundwater levels and allows saltwater to enter.

4.2 Hydrochemical facies evaluation

Chemical ion ratios enable the identification of geochem-

ical processes affecting water quality, such as leaching,

evaporation, and ion exchange, as well as the evaluation

due to saltwater intrusion (Sukhija et al 1996; Vengosh

et al 1999; El Moujabber et al 2006; Kouzana et al 2009).

In the present study, the used ion ratios are rK+/rCl−, rNa+/

rCl−, rCa2+/rMg2+, rMg2+/rCl−, rCa2+/rSO4
2−, rSO4

2−/

rCl−, rNa++K+-rCl−/SO4
2−, rCl−-(Na++K+)/rMg2+, rCl−-

rNa++K+/rCl−, rCl−/r(HCO3
−+CO3

2−), Cl−/Br− and Br−/

Cl− (Table 4, Figure 2). To describe the main source and

the hydrochemical processes affecting the groundwater

samples, the four end members, the recharge water (rain),

the seawater, reject water from RO plants, and rock sam-

ples, are used.

The rCa2+/rMg2+ ratio (ions are represented in meq/L)

can differentiate the groundwater types in carbonate aqui-

fer (Jacobson and Langmuir 1970). When this ratio

approaches one, indicating that groundwater flows entirely

through the dolomitic aquifer matrix. The groundwater in

limestone has a ratio equal to or exceeding four (Miesler

and Becher 1967). In Fig. 2, the rCa2+/rMg2+ ratio in

groundwater samples collected from the study area varies

from 0.2167 to 16.946, with a mean value of 4.1819,

indicating meteoric water origin. There is an inverse rela-

tionship between rCa2+/rMg2+ and TDS of groundwater

due to seawater mixing with groundwater. This ratio could

identify sulfate excesses in groundwater caused by CaSO4

dissolution or CaCO3 precipitation.

The value of rNa+/rCl− (ions are represented in meq/L)

ranges between 0.579 and 1.29 in the alluvium aquifer,

with an average value of 0.8979. In fresh and meteoric

water, the significance of rNa+/rCl− is always more than

Table 4 Hydrochemical ratio

ranges and mean values for the

several aquifers in the study

area

Ratios Alluvium aquifer Rain Sea

Range Mean

rK+/rCl− 0.005–0.052 0.015 0.00 0.017

rNa+/rCl− 0.579–1.292 0.897 0.644 0.849

rCa2+/rMg2+ 0.216–16.94 4.181 7.1660 0.142

rMg2+/rCl− 0.019–0.531 0.130 0.318 0.206

rCa2+/rSO4
2− 0.0193–2.706 1.220 2.661 0.268

rSO4
2−/rCl− 0.147–1.601 0.357 0.858 0.109

rNa++K+-rCl−/So4
2− −1.795–0.693 −0.451 −0.413 −1.373

rCl−-(Na++K+)/rMg2+ −4.089–4.955 1.206 1.114 0.730

rCl−-(Na++K+)/rCl− −0.292–0.420 0.102 0.355 0.150

rCl−/r(HCO3
−+CO3

2−) 5.194–315.939 70.791 0.652 270.417

Cl−/Br− 22.31–185.045 62.990 0.105 294.1

Br−/Cl− 0.005–0.044 0.022 9.454 0.003
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unity, while it is excluded in seawater (Hem 1985 and

Khaska et al 2013). A value greater than one shows sodium

has a considerably higher value than chloride. In Fig. 2b,

most groundwater has a value of rNa+/rCl− less than unity

due to water–rock interaction. At the same time, high-sal-

ine groundwater has rNa+/rCl− exceeding unit due to

groundwater mixing with Seawater (Alcala´ and Custodio

2008; Shunmugam 2022). 77% of the groundwater had

rNa+/rCl− a smaller amount than unity, while 23% have

rNa+/rCl− exceeding unity.

The ration of rSO4
2−/rCl− ratio in rainwater is 0.86 and

0.11 in seawater. Figure 2c depicts a negative association

between ratio value and total dissolved solids (TDS) as

salinity increases due to seawater intrusion. The ground-

water has rates ranging from 0.15 to 1.6, with a mean of

0.36. The calculation implies that 85% of (rSO4
2−/rCl−\

0.25) indicates meteoric water origin.

The lower values of rMg2+/rCl− (ions are represented in

meq/L) in the examined groundwater suggest the existence

of saltwater intrusion or marine salt pollution (Fig. 2d). The

Cl−/(HCO3
−+CO3

2−) parameter is used to differentiate

between a salinization tendency and areas of seawater

intrusion (Simpson 1946; Asare et al 2021; Chang et al

2022). The groundwater based on this ratio as; typically

suitable groundwater (Cl−/(HCO3
−+CO3

2−\1), slightly

contaminated water (1[Cl−/(HCO3
−+CO3

2−\2), moder-

ately contaminated water (2–6) and seriously contaminated

water (6–15), and e) highly contaminated water (more than

15). According to Fig. 2e, 6% of the groundwater is

moderately contaminated, 13% is seriously contaminated,

and 81% is highly contaminated waters.

Br−/Cl− ratio can discriminate the marine from terres-

trial salt content sources (Andreasen and Fleck 1997).

These ions are considered conservative because they are

unaffected by redox processes and are not adsorbed on

Fig. 2 Hydrochemical ratios of the studied groundwater with respect to total dissolved solids level

123

Acta Geochim (2024) 43:16–39 25



mineral or organic surfaces (Fetter 1993). In Fig. 2f, the

Br−/Cl− values vary between 0.005 and 0.045, with an

average value of 0.022, which is close to seawater (0.003),

suggesting the presence of seawater intrusion. Figure 1

shows the Br−/Cl− ratio versus total dissolved particles.

(Fig. 7K) indicates that as salinity increases, the Br−/Cl−

ratio decreases, suggesting that salinization of these ground

waters is caused primarily by mixing with seawater or

upwelling deep saline groundwater.

4.3 Saturation indices

The saturation index (SI) gives good insights into the

hydrochemical processes that influence groundwater

chemistry (Langmuir 1997; Li et al 2010; Mohammed et al

2022). In water, minerals are in equilibrium (SI=0),

undersaturation (SI\0), or indicate supersaturation (SI[0)

(Appello and Postama 2005; Qian and ma 2005; Luo et al

2008; Ndjaka 2022). The NETPATH model was used to

create an aqueous specification model, and saturation

indices for all groundwater samples were acquired (Plum-

mer et al 1992). In this research, the mixing with other

fluids and the effects of the impact of aquifer matrix on

groundwater and mixing with seawater were examined by

using the NETPATH software package. The SI for car-

bonate minerals (calcite and dolomite), halite (NaCl),

quartz, and sulfate mineral (gypsum) were calculated

(Table 3, Fig. 3a–e) and Table 3).

In Fig. 3a and b, groundwater samples had positive

saturation indices (SI[0 supersaturation of minerals) of

calcite (97%) and quartz (100%) due to the leaching and

dissolving of the limestone and felsic granitic rocks rich in

silicate minerals embedded in the alluvial aquifers that

comes from the upstream watershed. All groundwater

samples tested had negative halite and gypsum indices (SI

0 sub-saturation and mineral dissolution), showing that the

mineral was below saturation (Fig. 3c and d). The spatial

distribution of saturation indices shows lower SI values for

calcite and halite along the coastal shoreline due to mixing

with seawater (Appelo and Postma 2005). However, lower

values of dolomite (Fig. 3e) and halites were recorded at

the northwestern portion of the delta, indicating subsurface

groundwater replenishment and recharge come from the

basement mountain. Figure 4a–e indicate the relationships

between the groundwater salinity and the saturation indices

of calcite, dolomite, gypsum, quartz, and halite. The

groundwater samples have been plotted on the mixing line

between two end members; the rain/rock extract end

member and the sea/reject brine water end member. They

are indicating meteoric recharge origin and mixing with

seawater.

4.4 Seawater mixing index (SWMI)

The SWMI is a parameter chosen to indicate mixing and

used to understand the mixing processes in coastal aquifers

better (Eissa et al 2016a, b). Probability distribution curves

are essential for analyzing geochemical data and distin-

guishing processes influencing groundwater (Shaw 1961;

Sinclair 1974, 1976; Abu Salem et al 2022).

In Fig. 5a–d, Ti indicates the threshold value for Na+,

Mg2+, Cl−, and SO4
2− ions (Mondal and Singh 2011;

Kumar 2014). Inflections are determined using distribution

probability curves; the inflections are mostly attributed to

groundwater mixing with seawater. The estimated focal Ti

value for Na+ was 1600 mg/L, 25.4 mg/L for Mg2+, 3498.6

mg/L for Cl−, and 1809 mg/L for SO4
2−. Groundwater is

classified into two types by the SWMI. (Fig. 5). Group I

(SWMI\1) has a groundwater TDS range (from 895 to

4793 mg/L) representing the subsurface meteoric ground-

water recharge of the watershed. The salinity range of

Group II (62.79 SWMI 104.38) is similar to that of sea-

water (TDS values range from 33,539 to 53,216).

4.5 Stable isotope for evaluation of groundwater
origin

Isotope techniques can distinguish the processes con-

tributing to groundwater salinization, such as salt leaching,

meteoric recharge water, and mixing with seawater. The

oxygen (δ18O) and hydrogen (δ2H) isotope values of water
are perfect tracers for recognizing the recharge source

(s) and mixing with other waters as they are not involved in

geochemical reaction, and are sensitive to physical pro-

cesses such as evaporation(s) (Dansgaard 1964; Clark and

Fritz 1997).

The isotopic content of groundwater varies depending

on the groundwater sample from −0.64 ‰ to+5.21 ‰ for

δ18O and from −9.58 ‰ to+22.77 ‰ for δ2H, according to
the findings results of δ18O and δ2H in Table 1. Seawater is

represented by a Gulf of Aqaba water sample with con-

siderably elevated isotope values (δ18O: 1.64 ‰; 2H 9.80

‰), and it is one of the primary sources of salt in the

research region (Fig. 11a). The samples are separated into

two groups by plotting δ18O vs. δ2H (Fig. 6a). The first

group is relatively depleted with the content of both δ18O
and δ2H. Brackish water samples and samples with high

salinities are included in these samples. All samples are
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plotted close to the Global Meteoric Water Line (GMWL),

obtained from (Craig 1961), indicating that they are of

meteoric origin and have evaporated from shallow

groundwater within the aridity condition. The isotopic

fingerprints of these groundwater samples are plotted close

to the weighted mean average of local precipitation in the

hyper-arid zone of Southeast and Eastern Sinai reported by

Eissa et al. (2013). The second group is distinguished by

high values of δ18O and δ2H and proximity to the depicted

seawater sample, implying mixing with saltwater and
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Fig. 3 The spatial distributions

of the saturation indices of

several minerals
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evaporation processes influence the samples to various

degrees (WISER 2008; Anker 2003). The mixing ratio

between fresh water and seawater is illustrated in fig. using

the values of δ18O, chloride, and bromide. Rainwater

affects samples 9, 10, 14, 15, 19, 20, 23, 27, 38, 39, and 41,

whereas the other samples show a mixture of rainwater and

salt water (Fig. 6c and b).

4.6 Geochemical NETPATH model

The NETPATH model used rock-forming minerals and

x-ray fluorescence (XRF) data from the aquifer matrix to

account for the reactions with aquifer matrix and estimate

the mixing with different end members (Clark and Fritz

1997; Plummer et al 1992). The constraints are chosen

based on the rock composition of the quaternary aquifer.

Fig. 4 The spatial distributions of the saturation indices of several minerals
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Table 2 displays the XRF findings for the rock samples.

The average geochemical composition of the rock samples

has been calculated to reflect felsic, mafic, and intermediate

rocks (felsic group: rock samples 1, 1, 3, 5; the mafic group

rock samples 2, 4, 6, and the intermediate group rock

samples 1, 4, 6, 7, 8, 10). The NETPATH model was

presented to the three groups, simulating the mass-balance

movement solely through water–rock interaction processes.

The groundwater in the Quaternary alluvial aquifer flows

toward the sea from the northwest to the southeast (Sha-

bana 1998; Issar et al 1984). Groundwater analyses have

constrained the NETPATH geochemical model, the aquifer

matrix’s rock-forming minerals, and the XRF results

(Table 5).

Fig. 5 Cumulative probability curves for the distribution of A Na+, B Mg2+, C Cl−, D SO4
2− in groundwater samples E Cross-plot of Seawater

mixing index vs. total dissolved solids of the studied groundwater samples
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The NETPATH findings indicate the dissolution of

Gypsum, quartz, halite, mafic, intermediate, and stron-

tianite with some cation exchange, sodium in the aquifer

matrix exchanges with calcium in groundwater, and vice

versa. At the same time, albite, alunite, anorth, calcite,

chlorite, and k-mica are precipitated (Table 6).

The NETPATH model accounted for mass balance

transfer via water–rock interaction and computed seawater

mixing ratios in ten wells. The NETPATH results show

dissolution of gypsum, quartz, halite, felsic, mafic, inter-

mediate, dolomite, and strontite. Sodium in the aquifer

matrix exchanges with calcium in groundwater and vice

versa. While albite, alunite, anorthite, calcite, chlorite,

illite, and dolomite are precipitated (Table 6). The NET-

PATH model allowed mass balance transfer via water–rock

interaction in six wells and calculated seawater mixing

ratios. The calculated mixing in the delta aquifer ranges

from 1% to 90.4% from seawater.

4.7 SEAWAT transport model

The SEAWAT (Reilly and Harbaugh 2004; Langevin and

Guo 2006), a dependent variable density and solute trans-

port flow model, was used to simulate the seawater mixing

Fig. 6 a δ 18O versus δ 2H for

groundwater of the Dahab

watershed. b δ 18O versus

bromide for groundwater

samples in the Dahab

watershed. c δ 18O versus

chloride for groundwater

samples in the Dahab watershed

Table 5 Constraint, phases and parameters used as input data in the NETPATH geochemical model

Constrains phases Parameters

Calcium, Carbon, Chloride, Magnesium,

Potassium, Sodium, Sulfur, Silica

Albite, Alunite, Anorth, Calcite, Chlorite, Ca-MONT, Dolomite, Gypsum,

K-Mica, Illite, NaCl, SiO2, exchange, felsic (Ca0.7Mg0.09Na1.5K2.5Si34.7Al7),

mafic (Ca0.6.1Mg1.7Na0.8K2.6Si22.3Al6.5), intermediate

(Ca2.3Mg0.16Na0.7K5.4Si25.6Al6.3), Stronite (SrCO3)

Evaporation

and /or

mixing
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Table 6 NETPATH modeling results (mmol/L) for the Wadi Dahab Delta Area. Positive values mean the phase is going into solution while

negative values mean the phase is being removed from the solution

Basin Model type Initial

water

Sea

water

Final

water

Mixing percent

(%)

Phases precipitated or dissolved (mmol/L)

Initial

water

Sea

water

Albt Alun An Cal Chlrt Gyps Ilt

Delta Wadi

Dahab

Reaction

Models

15 None 14 – – −0.17 0.42 −3.528 −0.61 – – –

15 None 40 – – −1.70 3.05 −1.32 – – –

27 None 29 – – −5.22 −1.11 – −4.40 – 6.16 –

24 None 40 – – −1.04 −0.08 – −0.12 −0.18 4.51 –

15 None 16 – – −2.50 −1.35 – −5.77 – 4.05 –

15 None 17 – – −1.84 −0.49 – −3.38 – 2.61 –

15 None 18 – – −0.31 −2.35 −10.59 −0.86 – 5.91 –

15 None 9 – – −0.67 −0.28 −2.76 −1.71 – –

Mixing

Models

10 Sea 12 15.8 84.2 −7.48 −3.4883 – −0.96 −3.14 37.57 –

10 Sea 11 9.6 90.4 – −4.24 – −0.03 – 53.33 −67.03

41 Sea 23 0.92 0.08 −7.25 −2.11 −3.41 −4.99 – 16.02 –

27 Sea 26 94 6 −4.64 −2.11 – −2.96 −0.73 5.74 –

27 Sea 29 96 4 −4.27 −2.03 −1.26 −2.40 −0.27 7.10 –

M1 Sea 42 32.4 67.6 −6.76 −0.61 1.04 2.36 49.27 –

27 Sea 39 97.6 2.4 −0.01 −1.04 – −2.34 – 4.37 –

27 Sea 40 96.1 3.9 −2.98 −1.87 −1.97 −0.13 9.04 –

27 Sea 28 99 1 −3.61 −1.78 −2.46 −1.06 4.82 –

M5 Sea 4 14.3 85.7 −11.30 – – −0.47 −0.44 25.32 −20.97

Basin Model type Phases precipitated or dissolved (mmol/L)

Qz K-Mica Ca-

Mont

Ex Halite Felsic Mafic Inter Dol Stron Ev factor

Delta wadi dahab Reaction models – −1.8027 – −10.65 32.88 – 0.59 – – 0.08 0.98

– −5.47 – −3.52 33.69 – 1.06 – −0.30 0.06 –

9.80 – – – 22.96 – 0.26 – 0.90 0.04 –

– – – 3.15 6.01 – 0.16 – – – 1.1

– – – −10.49 42.97 – – 0.29 2.46 0.10 –

– – – −11.82 40.60 – 0.24 – 1.27 0.11 –

– – – −8.93 37.05 – 0.98 – – 0.09 –

– – – −7.78 41.78 – 0.31 – 1.97017 0.042 1.02

Mixing models – – – 41.96 – – 1.42 – – 0.053 –

– – – 68.14 139.85 – – 9.16 – 0.00 –

– – – – – 0.83 – – 2.90 0.09 –

3.13 – – – – 0.58 – – 0.04 –

– – – – – 0.47 – – – 0.04 –

– – – 43.88 – – – 0.52 – 0.08 –

– – – −2.99 – – – – 0.05 –

– – – – – 0.38 – – −1.50 0.04 –

– – – – – 0.45 – – −0.43 0.02 –

– – – 51.98 – – 4.87 – – 0.01 –

Alb. Albite; Alun. Alunite; An. Anorthite; Cal. Calcite; Chrt. Chlorite; Gyp. Gypsum; Ilt. Illite; Qz. Quartz; K-Mica. Potassium Mica; Ca-
Montmorillonite; Hal. Halite; Dol. Dolomite; Stron. Strontite; Ev. Evaporation Factor; Well locations for initial site-1, site-2 and final water are

indicated in Fig. 1
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in the delta Dahab alluvial fan. The model area of Delta

Dahab has been discreet into uniformed cells of 100 col-

umns and 100 rows of a dimension of 50 m.

4.7.1 Boundary, initial conditions, and model parameters

Three kinds of boundary conditions (Fig. 7) are applied; 1)

Constant head boundary (CHB) where; h=0 m boundary

has been applied along the Gulf of Aqaba 2) Constant

concentration boundary (CCB) where; chloride concentra-

tion=22 kg/m3) boundary has been used to simulate the

Gulf of Aqaba water chemistry (Langevin and Guo 2006)

and 3) Solute flux is used to simulate the chemistry

(Chloride concentration=130 mg/L) and subsurface

recharge comes from the upstream watershed. The solute

flux has been used at the boundary between the basement

mountain and the Quaternary aquifer. The value chloride

concentrations at the Gulf and upstream recharge were

based on the chemical analyses of two samples during the

field trip. The model has been stressed by pumping wells to

simulate the daily pumping from the aquifer data collected

during the field trip (5 to 10 m3/day for each well). The

geographical limits of the study region were considered to

have no flow boundary condition, suggesting that all four

domains are inside the study boundary (Fig. 7). The aqui-

fer’s total porosity ranges between 20 % and 30 %, and the

effective porosity ranges between 10 % and 15 % based on

the range of alluvial deposits along the Gulf of Aqaba

Fig. 7 Boundary conditions, head observations, chloride observations for the SEAWAT model domain

Table 7 The model parameters

used for the SEAWAT transport

model

Parameters Modeled value

Hydraulic Conductivity (m/day) 10–50 m/day El Kiki et al. (1992)

Total Porosity U 20–30 % (Fetter 2001)

Dispersivity αL=50 m, αL/αT=0.1, αT/αV=0.01 (Gelhar et al. 1992)

Molecular Diffusion Coefficient (m2/day) 10–9 m2/day (Guo and Langevin 2002)

specific storage 3.14910–5 m−1 (Himida 1997)

Density/Concentration Slope 0.7143 (Baxter and Wallace 1916)
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(Eissa 2018). The specific storage value assigned to the

model was 1910–5 m−1 (El Kiki et al 1992) (Table 7). The

molecular diffusion coefficient was assigned by 0.308

m2/day (Guo and Langevin 2002). The assigned disper-

sivity value was 50 m, giving the best bound between the

measured field and modeled calculated values, and was

consistent with the dimension scale of the investigated

aquifer (Gelhar et al 1992; Zheng and Bennett 1995).

The SEAWAT model has been run until reaching the

steady state condition for the groundwater flow and using

chloride ions as a transport specie. The steady-state con-

dition has been reached when no further changes have been

detected in both head and transport. The flow and solute

transport governing equations and boundary parameters

define the numerical model. Groundwater flow equations

account for the hydraulic head. The head values were

increased for representing samples distant from the coastal

regions.

4.7.2 Model calibration and solute transport simulation

Historical head and chemistry observation records have

been used to calibrate the SEAWAT model. The head and

salinity data were obtained from previous publications

(Shabana 1996) and our field measurements were con-

ducted in 2019. The model ran until we obtained general

agreement between the measured data in the field and the

calculated data from the model. The SEAWAT ground-

water flow model for the Wadi Dahab Delta was calibrated

using SEAWAT in a transient state using the chloride

concentration tied with the head observations data from

1986 to 2019 (Fig. 7). The model has been calibrated by

optimizing the subsurface recharge values at the boundary

between the basement mountains and the alluvial aquifer

until the relative error between the simulated and measured

chloride and head observations have been minimized

(Fig. 8). The relative error between the measured and

calculated water levels was less than 10% and less than

15% for the chloride observations. The assigned pumping

data were collected during the field trip from the well

owners, ranging from 0.5 to 7 m3/day for the hand-dug

wells and from 15 to 20 m3/day for the drilled wells which

has submerged pump.

The same framework was also used to forecast pumping

rates, which varied until the calculated values’ salinity

curve matched the observed values (Fig. 8). The calibrated

model models transient changes in groundwater levels and

salinity flux based on pumping stresses. Using observed

head and salinity for calibrating the SEAWAT model

yields more precise estimates of model output parameters

such as subsurface recharge and modeled pumping stresses

(Eissa et al 2016a, b; Eissa 2018).

The calibrated SEAWAT model results show that the

hydraulic head’s maximum drawdown has been observed

at the Northeastern portion of the Wadi Dahab Delta,

where the short inter-distance between wells is more clo-

sely crowded. The groundwater level has been decreased

by 3 m from the steady state initial assigned values indi-

cating overpumping and high withdrawal rates, which

exceed the natural subsurface groundwater recharge

(Fig. 9a–e). The eastern side of the Delta maintained the

natural subsurface flow and low drawdown values. The

modeled estimated average of the total subsurface recharge

from the mountainous basement attains 800 m3/day during

Fig. 8 a Calculated versus observed head, and b Calculated versus measured chloride used for SEAWAT model calibration
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the modeled time. The main recharge comes from the

Northwestern portion of the study, mainly from the base-

ment mountain, with scarce recharge from the Western

side.

The model well simulates the solute transport due to the

seawater intrusion due to withdrawals and the upwelling

underneath seawater. The seawater invades the subsurface

groundwater and shows the area near the coastline. The

distance of seawater invasion from the coastal shoreline

was estimated at 250, 300, 500, 1000, 1500 m during the

period of steady 1986 (steady state), 2000, 2015, and 2040

(Fig. 10a–e). The estimated chloride concentration in the

delta aquifer increased from 895 mg/L in the initial state to

4793 mg/L from 1986 to 2019 (Fig. 11a–e). The extrapo-

lated model shows increasing chloride concentrations in

the Delta in case of using the same pumping stresses. The

model poorly performed the simulation of solute transport

due to the high gradient concentration between the Gulf

water and groundwater and the large grid dimension. The

seawater intrusion indicates scarce recharge in such coastal

arid regions, and the groundwater has to be well managed

the pumping has to be reduced.

5 Conclusion

The groundwater chemistry within the alluvial aquifers of

the Wadi Dahab delta transforms from brackish to saline

water due to over-pumping. The high salt and chloride

concentrations in groundwater are primarily due to the

leaching and dissolving of marine origin. Overpumping

groundwater in coastal aquifers degrades the groundwater

quality due to declining groundwater level and, conse-

quently, upconning of the saline wedge and inducing

Fig. 9 a The simulated groundwater head during different time steps for the SEAWAT calibrated model
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seawater intrusion. The rNa+/rCl− in most groundwater

samples is less than unity due to water–rock interaction; at

the same time, high saline groundwater that has rNa+/rCl−

more than unity due to groundwater mixing with seawater.

The rCa2+/rMg2+ shows an inverse relationship with the

total dissolved solids due to seawater mixing with

groundwater. This ratio indicates an excess of sulfate in the

groundwater due to CaSO4 dissolution or CaCO3 precipi-

tation. Also, the rSO4
2−/rCl− decreases by increasing

salinity due to seawater intrusion. The groundwater sam-

ples have Br−/Cl− a ratio between 0.005 and 0.045 with a

mean value of 0.022 (seawater has a value of 0.003),

indicating the presence of seawater intrusion. Group I

(1.56\SWMI\7.92) is more significant than unity and has

a groundwater TDS range (from 895 to 4793 mg/L), indi-

cating upstream meteoric groundwater recharge.

In contrast, Group II (62.79\SWMI\104.38) has a

salinity range (TDS values ranging from 33539 to 53216

mg/L) that is near seawater. The geochemical NETPATH

model constrained by the dissolved major ions, isotopes,

and the rock aquifer forming minerals as phases indicates

the mixing percent with the seawater ranges from 9% to

97% of seawater from 91% to 3% of original recharge

water. SEAWAT modeled the estimated average subsur-

face recharge from the mountainous basement block by

about 800 m3/day during the modeled time. The main

charge comes from the Northwestern portion of the study,

mainly from the basement mountain with scarce recharge

from the Western side. The seawater invades the subsur-

face groundwater and shows the in area near the coastal

shoreline. The distance of seawater invasion from the

coastal shoreline was estimated at 250, 300, 500, 1000, and

Fig. 10 a The simulated chloride concentration (mg/L) during different time steps for the SEAWAT calibrated model
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Fig. 11 2-D cross section showing the chloride concentration (mg/L) during different time steps for the SEAWAT calibrated model
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1500 m in 1986 (steady state), 2000, 2015, and 2040. The

Wadi Dahab delta aquifer receives a limited recharge, and

the pumping withdrawal quantity exceeds the natural sub-

surface recharge, and the aquifer is endangered by seawater

intrusion.
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Mohammed MA, Szabó NP, Szűcs P (2022) Multivariate statistical

and hydrochemical approaches for evaluation of groundwater

quality in north Bahri city-Sudan. Heliyon 8(11):e11308

Mondal NC, Singh VP (2011) Hydrochemical analysis of salinization

for a tannery belt in Southern India. J Hydrol 405:235–247

El Moujabber M, Bou Samra B, Darwish T, Atallah T (2006)

Comparison of different indicators for groundwater contamina-

tion by seawater intrusion on the Lebanese coast. Water Resour

Manage 20:161–180

123

Acta Geochim (2024) 43:16–3938



Ndjaka A (2022) Thermophysical processes and reactive transport

mechanisms induced by CO2 injection in deep saline

aquifers (Doctoral dissertation, Université de Pau et des Pays
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