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Abstract Carbon dioxide (CO,) emissions from aquatic
ecosystems are an important component of the karst carbon
cycle process and also a key indicator for assessing the
effect of karst carbon sinks. This paper reviewed the CO,
partial pressure (pCO,) and its diffusion flux (FCO,) in
karst surface aquatic ecosystems, mainly rivers, lakes, and
reservoirs, and their influencing factors summarized the
methods for monitoring CO, emissions in karst aquatic
ecosystems and discussed their adaptation conditions in
karst areas. The pCO, and FCO, decreased in the order of
rivers > reservoirs > lakes, and the values in karst lakes
were eventually significantly lower than those in global
lakes. The pCO, and FCO, of karst aquatic ecosystems had
patterns of variation with diurnal, seasonal, water depth
and hydrological cycles, and spatial and temporal hetero-
geneity. The sources of CO, in karst waters are influenced
by both internal and external sources, and the key spatial
and temporal factors affecting the CO, emissions from
karst rivers, lakes, and reservoirs were determined in terms
of physicochemical indicators, biological factors, and bio-
genic elements; additionally, the process of human activity
interference on CO, emissions was discussed. Finally, a
conceptual model illustrating the impacts of urban devel-
opment, agriculture, mining, and dam construction on the
CO, emissions at the karst surface aquatic ecosystem is
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presented. Meanwhile, based on the disadvantages existing
in current research, we proposed several important research
fields related to CO, emissions from karst surface aquatic
ecosystems.

Keywords Karst area - River - Lake - Reservoir - Partial
pressure of CO, - CO, diffusion flux

1 Introduction

The carbon cycle, as the link between the Earth’s bio-
spheres, affects global climate change and plays an
important role in maintaining the stability of biosphere
structure and function (Battin et al. 2023; Tromboni et al.
2022). Therefore, quantifying the Earth’s global carbon
cycle is essential for a sustainable future because CO, has
an active role in the Earth’s energy budget (Smith et al.
2013). Inland aquatic ecosystems (rivers, lakes, and reser-
voirs) have become indisputable in the global carbon cycle
as the most active sites of material cycling and energy
exchange. Inland freshwater ecosystems generally have a
high value of pCO,, which makes the inland water column
an important source of atmospheric CO, emissions (Borges
et al. 2015; Holgerson and Raymond 2016; Li et al. 2018b;
Ran et al. 2015; Tranvik et al. 2009), and in turn, affects
the regional carbon balance. The global river (stream) and
lake (reservoir) areas are 6.24 x 10* km? and 3 x 10°
km?, respectively, which account for only 0.47% and 2.2%
of the global land area, but release approximately 1.8 Pg
C/yr and 0.3 Pg C/yr (Raymond et al. 2013), respectively,
and their combined release fluxes are comparable to the net
uptake of 2.6 Pg C/yr by terrestrial ecosystems. However,
the global account of CO, emissions from inland aquatic
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ecosystems is still largely unknown, and available esti-
mates diverge greatly from one another. Cole et al. (2007)
reported a global river CO, release flux of only 0.23 Pg
C/yr. Lauerwald et al. (2015) estimated a global river CO,
release flux of 0.65 Pg C/yr, Varis et al. (2012) showed a
global reservoir CO, release of approximately 44.5 Tg
Clyr, St. Louis et al. (2000) estimated CO, emissions from
global reservoir of 272.7 Tg C/yr, and Deemer et al. (2016)
estimated a reservoir CO, emissions of approximately 36.8
Tg C/yr. These results indicate that great uncertainty
remains as to the contribution of these inland water bodies
to the global carbon budget. Therefore, an accurate
assessment of CO, emission fluxes from the inland water—
air interface can not only improve understanding of the
global carbon cycle but also provide a scientific database
for the climate change management (Ran et al. 2021; Wang
et al. 2021).

Although just 15% of the world’s geographical area is
covered by karst regions (Fig. 1), carbonate rocks make up
94% of the carbon pool (Xiong et al. 2022), and the carbon

Photosynthesis ! CH,O i
< :
Respiration | OC pool i

sink effect formed by the karstification process [(Ca;_x
Mg,) COs+ CO, + H,O - (1_x) Ca®" 4+ xMg*t
+ 2HCOj3; 7] has become an important part of the global
carbon cycle process at short time scales (Binet et al. 2022;
Liu and Dreybrodt 2012; Martin 2017; Ulloa-Cedamanos
et al. 2020). It has been estimated that the global carbonate
carbon sink is 0.89 £ 0.23 Pg C/yr, which amounts to
74.50% of the global net forest sink and accounts for
28.75% of the terrestrial sinks or 46.81% of the missing
sink (Li et al. 2018a). However, according to the traditional
view, the bicarbonates produced by karstification in solu-
tion will redeposit as calcite, and the associated CO, will
be returned to the atmosphere, and thus, there will be no net
sequestration of the CO, (Curl 2012). The calculation of
the CO, exchange flux at the water—air interface in karst
aquatic ecosystems is the key to accurately evaluating karst
carbon flux and intensity, thus playing a crucial role in
balancing the CO, budget in karst catchments. With the
development of research, it was found that the dissolved
inorganic carbon (DIC) produced by Kkarstification can

Transformation within karst aquatic ecosystems

Fig. 1 Distribution of carbonate rocks at Earth’s surface and the effect of surface aquatic ecosystems on the DIC produced by dissolved

carbonate rocks
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provide a sufficient carbon source for photosynthetic
organisms in karst surface aquatic environments (Fig. 1),
and DIC is transformed into relatively stable organic car-
bon (OC) under the effect of the biological carbon pump
(BCP), thus enhancing the stability of karst carbon sinks
(Liu 2022; Liu et al. 2018b); this process can also reduce
the pCO, in surface water (He et al. 2022). Moreover, some
studies have stated that carbonate dissolution is one of the
key factors driving the release of CO, from more than half
of the world’s lakes (Marcé et al. 2015); however, the
proportion of CO, outgassing flux accounts for only less
than 10% of the weathering carbon sink of carbonate rock
in the catchment (Lv 2018; Zhang 2018). In addition,
compared with non-karst areas, rivers in karst areas gen-
erally have a relatively high pH due to the weathering of
carbonate rocks, which makes the rivers in this area have
relatively low pCO, and FCO, (Liu and Han 2021). Thus,
the DIC produced by karstification is not all returned to the
atmosphere as CO,. Moreover, the existing research shows
that the CO, emissions from the surface water in different
karst regions show significant spatial and temporal
heterogeneities, and these changes are controlled by com-
plex biological, chemical, and physical factors, and are
even sensitive to anthropogenic activities.

The chemical weathering of carbonates coupled with
photosynthesis is an important part of the ecosystem car-
bon sink at short timescales (Chen et al. 2023). The inland
aquatic ecosystem plays an important role in the karst
carbon cycle, and the CO, exchange process across the
water—air interface in karst water is the key process to
evaluate the stability of karst carbon sequestration (Liu
et al. 2018a; Zhang et al. 2023). This paper summarizes the
current monitoring methods and their adaptability for pCO,
and its diffusion flux in karst surface water environments;
additionally, it analyzes the key factors affecting CO,
emissions, especially the disturbance process of human
activities. The outcomes of the study help to deepen the
understanding of carbon cycle processes in karst aquatic
ecosystems.

2 CO, partial pressure and its diffusion flux
calculation method

Currently, two methods, the thin boundary layer method
(TBL) and the closed static chamber method (CSC), are
commonly used to measure the CO, emissions from karst
surface water (Tables 1, 2).

The estimation method of the TBL model is based on the
gas transfer coefficient (k) value of CO, and the difference in
the CO, concentration at the water—air interface. The con-
centration of dissolved CO, in water can be calculated by the
carbonate equilibrium method (Zhang et al. 2020a).

Generally, after the parameters such as alkalinity, tempera-
ture, pH, and ion compositions of the samples are measured,
the pCO, of the water samples can be calculated by using
CO, SYS, PHREEQC, and WATSPEC software (Li et al.
2022b; Liu et al. 2008b; Yang et al. 2021), or the CO, con-
centration in water can be measured based on the headspace
equilibrium method (Miao et al. 2022). The gas transport rate
k is a key parameter for quantifying and predicting the CO,
gas exchange process and flux across the water—air interface
of the water column. Most studies use the mathematical
empirical formula established by Jihne et al. (1989) to
determine the k value or the SF¢ gas tracer method can be
used to measure the k value in the field. However, previous
research shows that the average k value of karst surface
streams (~ 3.5 m wide) obtained by the empirical formula
was 42.12 cm/h, while the average k value obtained by the
SFg tracer experiment was 19.03 cm/h. This result indicates
that the k values obtained by different methods in the process
of karst groundwater transformation into surface water are
quite different and have obvious temporal and spatial vari-
ation characteristics (Wu 2018). This high spatiotemporal
variability makes the estimation of CO, emission capacity
based on empirical formula biased, requiring multiple field
verifications. However, for the Lijiang River (~ 220 m
wide) with an open water surface, the average k values
obtained by formula calculation and SFg tracer experiment
were 14.88 cm/h and 16.52 cm/h, respectively, and the dif-
ference between them was small (Zhang 2018). In addition,
the pH value, wind speed, water temperature and other
indicators have significant influences on the results of the
TBL estimation method (Yao et al. 2015).

The principle of the CSC method is to design a chamber
of appropriate volume and fix it on a floating device (foam
board, tire, etc.), by monitoring the change in the CO,
concentration in the box for a long time to determine its
emission flux. The CO, concentration in the chamber is
usually measured by gas chromatography after a gas
sample is taken by an aluminum foil sampling bag (Li et al.
2015a), or the chamber is directly connected to a
portable analyzer (equipment produced by PP Systems,
LGR, Picarro, Vaisala, etc.) to realize the continuous
measurement of the CO, concentration in the chamber
(Chen 2019; Li et al. 2016; Wu 2018). The CSC method is
also susceptible to pressure disturbance in the chamber
caused by the flow of water below, which affects the dif-
fusion of gas molecules in the chamber and can cause
deviations in the observation results.

In karst areas, there is a significant positive correlation
between the results obtained by the two methods, but the
flux obtained by the TBL method is usually higher than that
obtained by the CSC method (Wu 2018; Zhang 2018). It
has also been shown that the CSC results are higher than
the TBL results due to the effect of turbulence on the river
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surface (Chen 2019). In summary, although both the flux-
box method and the model method have certain errors,
none of the existing methods can provide an accurate
estimation of the CO, potential from the karst surface
water. Generally, the TBL method can be used due to its
wide range and low cost, and this method is suitable for
streams, rivers, and lakes, while the CSC method is more
suitable for lentic water ecosystems (lakes, reservoirs, etc.)
or rivers with open water surfaces based on section mon-
itoring; however, the CSC method requires a larger sam-
pling frequency. Therefore, it is necessary to adopt an
appropriate estimation method based on the requirement of
the study and financial availability.

3 Source analysis of CO,

Since CO; is an important component of DIC in water, the
equilibrium among the ions (CO, «— HCO;~ « CO5*")
contained in DIC is rapid (Johnson 1982), which gives rise
to the rapid exchange of CO, between the water—gas
interface in an equilibrium state. Generally, the
stable (3'°C) and radiocarbon isotopes (A'C) of DIC can
be analyzed to reveal the source of CO, in karst water and
the influence of biogeochemistry, which can also reveal the
effect of exogenous carbon-containing substances on the
cycle of DIC in karst water (Huang et al. 2017; Wang
et al.2019; Cao et al.2022; Li et al. 2022a, b).

DIC in karst freshwater is mainly influenced by a
combination of internal and external sources (Fig. 2). The
endogenous sources are mainly biological anaerobic/aero-
bic respiration or photochemical degradation of organic
matter within the river (Duan and Huang 2021), while the
exogenous sources under natural conditions are mainly
DIC contributed by carbonate karst dissolution, terrestrial

organic matter, soil, and atmospheric CO, input (Zhang
2018), usually because the river pCO, is higher than
atmospheric pCO,. thus, the DIC exchange of atmospheric
CO; to the river water surface can be neglected, but when
karst surface waters have a pCO, less than the atmospheric
pCO, under the influence of photosynthesis, the contribu-
tion of atmospheric CO, to the DIC of karst water needs to
be considered. Overall, the carbonate weathering and bio-
chemistry processes were the predominant factors con-
trolling the spatial distributions of the DIC concentrations
in the karst area (Chen et al. 2021; Zavadlav et al. 2013).

In addition, anthropogenic wastewater contains a large
amount of inorganic and organic carbon-bearing substances,
which can directly affect the pCO, and its release flux from
the receiving water; furthermore, the large amount of
exogenous acids (nitric acid and sulfuric acid) produced by
human activities intensifies the dissolution of carbonate
rocks in the watershed (Lyu etal. 2018; Xuetal. 2021; Zhang
2017), which also increases the discharge flux of DIC into
karst surface water. Therefore, in the future, with a relatively
high urbanization rate and developed industrial and com-
mercial activities, it is necessary to further research on CO,
source identification, clarify the contribution of different
types of human activities to the CO, in the water of lakes,
reservoirs, and rivers in karst areas, and then improve the
accuracy of CO, flux estimation.

4 Spatial and temporal characteristics of CO,
partial pressure and its emission
4.1 The overall distribution characteristics

As can be seen in Tables 1 and 2, the minimum and
maximum values of pCO, in river (stream) water were
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Fig. 2 Schematic diagram of the carbon cycle in the karst aquatic ecosystem
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6509 £ 691.5 patm and 10,073.2 &+ 3464.5 patm,
respectively, and the minimum and maximum values of the
FCO, diffusion flux were 6.8 &+ 4.4 mmol (m*d)~' and
574.8 + 288.4 mmol (m? d)~', respectively. The CO,
fluxes in the karst rivers were within the intermediate
published range. Additionally, the large coefficient of
variation in physicochemical parameters like pH and water
temperature in the same river indicates that pCO, and
FCO, have obvious spatial heterogeneity, and tributaries
have higher pCO, and FCO, than mainstreams.

The FCO, of karst lakes fell in the range of
— 3454+ 12.9~206.8 &+ 27.3 mmol (m®d)~!, and the
highest value was shown in the San José (mesotrophic) and
San Lorenzo (eutrophic) lakes during the wet season in
Mexico, and the lowest value was recorded in Caohai,
which is a typical macrophytic lake in China. Although the
FCO, of karst reservoirs is higher than that of lakes, it is
still lower than that of karst rivers in general, and it is lower
than that of the Three Gorges Reservoir in China and the
average value of global reservoirs. Meanwhile, the karst
lakes, reservoirs, and deep-water rivers have the charac-
teristic that pCO, increases with depth. In addition, Table 2
shows significant differences in the pCO, and FCO, data
obtained from different studies for the same reservoir (e.g.,
Baihua, Hongfeng), which may be related to the difference
in monitoring time, e.g., Wang et al. (2011) used monthly
monitoring throughout the year, Wang et al. (2021) used
quarterly monitoring throughout the year, and Li et al.
(2022b) used only single-month monitoring data.

4.2 Seasonal and hydrological cycle variation

Due to seasonal rainfall, temperature, and aquatic plant
growth, the pCO, and FCO, in surface water in karst areas
have significant seasonal fluctuations. Zhang (2018)
showed that the CO, exchange in a typical section of the Li
River was larger in the rainy season than in the dry season,
and some months showed the characteristic of absorbing
atmospheric CO, in the dry season. The accelerated
degradation of organic matter by microorganisms and
rainfall brought soil CO, into the river in summer, resulting
in a higher pCO, and FCO, in the river in summer. Yang
et al. (2021) showed that the pCO, and its diffusive flux
were, on average, — 34.49 mmol (m2 d)_1 and 55.94
patm, respectively, during the wet season. The pCO, and
FCO, in the dry season were higher than those in the wet
season, but they still showed the characteristics of
absorbing atmospheric CO,_ In addition, the pCO, of deep-
water lakes (reservoirs) in karst areas in different seasons
increased overall in the vertical direction with increasing
water depth, resulting in higher pCO, in the outgoing water
of reservoirs than in the inflowing river water (Liu 2021;
Wang et al. 2021).

4.3 Diurnal variation characteristics

The metabolic activities of aquatic photosynthetic organisms
and the solar cycle driving water temperature changes in
surface water resulted in the pCO, and FCO, in the water
exhibiting obvious diurnal characteristics. During the day-
time, the water temperature is relatively higher, and the
process of stream CO, degassing and the ability of aquatic
plants to use HCO;™ in the water for photosynthesis are
enhanced, causing the pH of the water to rise, calcite
supersaturation and calcium carbonate deposition, which in
turn reduce the pCO, and FCO, in the karst water. However,
the respiration of aquatic organisms at night releases CO,
into the water, which leads to an increase in the concentration
of DIC, resulting in higher pCO, and FCO, in the water. In
addition, the vertical movement of phytoplankton can cause
density changes, which is also one of the factors affecting the
diurnal variation in CO, partial pressure and its diffusion flux
in karst reservoirs (Li et al. 2015b, 2014; Mo et al. 2014).

4.4 Long-term scale changes

Currently, the sampling periods of studies of pCO, and
FCO, in karst surface water are mostly monthly, quarterly,
hydrological period (wet/dry/flat seasons) or diurnal fre-
quency sampling in a year, and there are relatively few
studies on multiyear continuous high-frequency sampling.
Long-term monitoring can help to obtain more accurate
information on carbon sources/sinks and their control
mechanisms. According to the results of a 23-month con-
tinuous monitoring study at Dalongdong Reservoir in
Southwest China, although the reservoir is a carbon source
most of the time, the CO, emission flux at the water—gas
interface accounts for only a small portion of the DIC
carbon pool in the reservoir, the pCO, increases signifi-
cantly along the reservoir from upstream to downstream,
and the reservoir have a low CO, release during water
temperature stratification, with considerable CO, absorp-
tion into the reservoir carbon cycle during the reservoir
thermal stratification season (Li et al. 2022a). Therefore,
the sampling monitoring strategies need to be considered in
detail to provide more reliable estimates of regional karst
surface water CO, emissions (Zhang et al. 2020c).

5 Factors influencing the pCO, and FCO, in karst
surface water

5.1 Physicochemical parameters

The pH, temperature, and precipitation are important fac-

tors affecting pCO, in karst surface water. pH can impact
the dissolution of CO, by affecting the carbonate balance
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in the water (CO,+ H,0 = HCO;~ + H'

= CO327 + H"). When the pH value decreases, the
pCO, and FCO, increase, and conversely, the pCO, and
FCO, decrease (Wang et al. 2022b). If the pH value is
greater than > 9, it can cause the reaction of atmospheric
COyp with OH™ in the water (COyy) + OH™
= HCO;") (Herczeg and Fairbanks 1987). The increase in
water temperature not only facilitates the decomposition of
organic matter and microbial metabolism in the aquatic
ecosystem but also affects gas solubility and the balance of
the carbonate system in the water, which in turn affects the
concentration of CO, in the water (Wang et al. 2017);
meanwhile, the increased water temperature may promote
some primary production and decrease the pCO, (Peng
et al. 2018), though the increase in air temperature could
enhance soil respiration near the river and increase the
input of CO, to the soil in the terrestrial domain (Zhang
2018). For deep-water karst lakes or reservoirs, changes in
water temperature can cause thermal stratification, limiting
the upward and downward exchange processes of water
and elements, and changing the vertical pCO, distribution
(Li et al. 2022a; Pu et al. 2020; Wang and Li 2021; Wang
et al. 2021). In addition, reservoir water retention time
(annual/monthly, weekly/daily) affects photosynthetic
intensity, which in response leads to differences in CO,
emissions from karst reservoirs (Wang et al. 2020a, b; Yi
et al. 2022).

Due to the increased rainfall during the wet season, the
seasonal variation in the CO, exchange in karst rivers is
usually interrupted by rainfall, which leads to the input of
high soil CO, concentrations into the rivers and thus
increases the CO, exchange, making the pCO, and FCO, in
the wet (rainy) season greater than those in the dry season
(Qian et al. 2017). At the same time, the large amount of
precipitation increases the river flow, and the CO, con-
centration in rivers can also be diluted by a high precipi-
tation (Zhang et al. 2020b). Since rivers are lotic
ecosystems, and rivers in karst areas mostly originate from
mountainous areas, the aeration process generated by
plunging water and ripples also increases the gas exchange
at the water—gas interface, while tributaries tend to have
larger specific drop and flow velocity, and main streams
have larger flow rates; thus, the dilution effect and river
structure are important factors for the lower CO, fluxes at
the water—gas interface in the mainstreams of karst rivers
compared with its tributaries. In contrast, lakes and reser-
voirs are lentic ecosystems with open water areas, and the
water is not easily disturbed, while the direct recharge of
rainfall to the water surface reduces the CO, concentration.
In addition, lentic ecosystems are conducive to the growth
of aquatic photosynthetic organisms, and their primary
productivity is generally higher than that of rivers. These
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factors make the pCO, and FCO, of karst lakes (reservoirs)
lower than those of rivers.

5.2 Biological factors

The metabolic process of aquatic organisms is not only an
important source of CO, in karst aquatic ecosystems
(Fig. 3) but also an important influencing factor in con-
trolling CO, emissions. As producers in the water body,
aquatic photosynthetic organisms can directly use dis-
solved CO, or use HCO;™ for photosynthesis based on the
carbon concentration mechanism (CCM), and this process
can increase dissolved oxygen (DO) concentration and
reduce pCO, and FCO, in water, giving rise to a significant
negative correlation between pCO, and DO in karst surface
water (de Montety et al. 2011; He et al. 2022; Liu 2021;
Mo et al. 2014). Moreover, enhanced respiration of aquatic
photosynthetic organisms and other heterotrophic organ-
isms causes more CO, to enter the water, which decreases
DO concentration and increases pCO, and FCO, in the
water. Therefore, the pCO, of karst aquatic ecosystems has
obvious daily and seasonal variation characteristics.

Previous studies have shown that the formation of
organic carbon by aquatic algae and submerged plants with
large amounts of DIC is an important component of the
karst carbon sink (Ni and Li 2022), which will make the
inorganic carbon produced by karst geological processes
finally form buried endogenous organic carbon (OC) and
enhance the stability of the karst geological carbon sink
(Zhang et al. 2022). The dissolved organic carbon (DOC)
formed therein is an important component of endogenous
OC, and the formed endogenous DOC will be converted to
recalcitrant dissolved organic carbon (RDOC) under the
metabolism of microorganisms, the proportion of RDOC
accounts for an average of 78% of the total DOC in karst
surface water (Xiao et al. 2020b), showing the high sta-
bility of autochthonous dissolved organic matter in karst
water environments (Xia et al. 2022).
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5.3 Nutrients

Nitrogen (N) and phosphorus (P) are biogenic elements that
mainly control the trophic state of aquatic ecosystems, and
they are the main substrates for the metabolism of
microorganisms and aquatic vegetation, which can change
the balance between primary productivity and respiration
in aquatic ecosystems (Gu et al. 2022). Moderate nutrient
inputs will increase aquatic primary productivity promoted
by high nutrient loading and reduce CO, emissions
(Fig. 3), while excessive nutrient input will enhance water
respiration and promote CO, production (Liu 2022). As
shown in Table 2, the eutrophic San Lorenzo in the tropical
karst region increased CO, evasion rates to the atmosphere,
and this was due to the persistence of anoxia in most of the
lake’s water column, which maintained high rates of
anaerobic respiration coupled with the anaerobic oxidation
of methane (Vargas-Sanchez et al. 2023).

Meanwhile, studies on the effects of N and P on carbon
emissions from karst aquatic ecosystems have varied
widely; there was a significant positive relation between
the pCO, and TP, indicating that the river is in a P-limited
nutrient state (Liu et al. 2021a), and Chen (2019) pointed
out that there was no significant correlation between TP
and TN and CO, release fluxes at the water—air interface in
Aha Lake and its inflowing rivers in Southwest China.
However, Li et al. (2022b) found a significant positive
correlation between pCO, and ammonia nitrogen in Aha
Lake. In addition, prior studies found that when the N and
P concentrations in the water are controlled, the CO, fer-
tilization effect may significantly affect the growth of
cyanobacteria, diatoms, and submerged plants (Zhang et al.
2023), suggesting that the primary productivity of karst
lake water is limited not only by P or N but also by DIC.
Therefore, the effects of increasing nutrient loading into
karst aquatic ecosystems on CO, emission still need to be
better understood.

5.4 Anthropogenic activities
5.4.1 Urban construction

Rapid urbanization has been reported to affect the carbon
biogeochemical cycle in rivers (Tang et al. 2021), and
urban construction can significantly increase CO, produc-
tion and emission from karst surface water (Chen 2019; Li
et al. 2022b; Liu et al. 2021a; Lv 2018; Ni et al. 2019). This
effect is mainly due to the multifold increase in nutrient
loads and organic matter concentration in river water
caused by urban surface pollution and direct discharge of
wastewater, which in turn leads to the development of
enhanced heterotrophic systems in karst surface water
ecosystems (Li et al. 2020), resulting in intensifying the

CO, emission rate. In addition, although urban wastewater
treatment plant discharges meet the discharge standards,
the treated discharge effluent has lower pH and higher
concentrations of DOC, DIC, and nutrients compared to the
surrounding natural water (Yoon et al. 2017), which could
be another reason for increasing the carbon emission
intensity of the receiving karst water (Yang et al. 2018).
With economic and social development, the urbanization
rate of karst areas is increasing year by year, e.g., the urban
area in karst areas of China has grown from 0.88% in 1980
to 2.03% in 2020, especially in the last decade when the
urban area almost doubled (Liu et al. 2022). Therefore, the
acceleration of urban construction in karst areas will fur-
ther affect the accuracy of CO, emission flux estimation in
karst surface waters.

5.4.2 Agricultural development

Generally, the carbonate weathering by H,CO; (natural
weathering pathway), in addition to nitric acid (HNO3) has
been demonstrated to be a strong weathering acid, which is
mainly oxidation of reducing nitrogen from fertilizer
(ONF), resulting in enhanced carbonate weathering rates
(Ca;,Mg,)CO3 + HNO; — (1—x)Ca’t 4 xMg*"

+ NO3;~ + HCO;37) (Perrin et al. 2008). Additionally, the
protons released by ONF may be neutralized by HCO5™ to
produce H,COj in receiving water, which dehydrates to
COyy (Xu et al. 2021), and according to the carbonate
balance system in karst water, which giver rise to increase
pCO; and FCO,. At the same time, these nitrate ions are, in
turn, essential for the growth of aquatic organisms; thus,
previous studies have also pointed out that the increasing
nutrient loadings from agricultural effluents may have led
to increasing OC but decreasing pCO, in karst waters (Liu
et al. 2021b). However, we also noted that there are high
levels of pesticide residues in the aquatic environment in
China since the extensive pesticide use to increase agri-
cultural yields began (Grung et al. 2015), which could have
detrimental effects on aquatic microorganisms. Meanwhile,
herbicides are generally more toxic to phototrophic
microorganisms, exhibiting toxicity by disrupting photo-
synthesis (DeLorenzo et al. 2001). Thus, the impact of
agricultural development on CO, release from the karst
surface water environment needs to be further explored.

5.4.3 Mining activities

Mineral resource development is the material basis for
national economic and social development, and mineral
resources such as coal and metal sulfides are abundant in
Southwest China, and the mining activities have deterio-
rated the quality of karst surface water (Jiang et al. 2020;
Liang et al. 2019). The mining process often causes sulfide
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minerals (mainly pyrite) to be exposed, and under the
combined action of air, water, and bacteria, acidic solutions
with low pH (< 4.5), high iron, high sulfate, and rich in
heavy metal acid mine drainage (AMD) are formed, and
AMD produces an obvious carbon source excitation effect
in karst areas.

Firstly, AMD can accelerate the dissolution of carbonate
rocks [2(Ca;, Mg)CO; + H,SO, — 2(1-x)Ca**
+ 2xMg*"  + 2HCO;™ + SO4*7] (Torres et al. 2014),
and since this kind of “water—-rock” reaction process not
only consumes CO, in the atmosphere/soil but also
increases the HCO53™ concentration in the water (Li et al.
2013a), it causes an increase in the flux of DIC from karst
rivers to the ocean, which in turn results in a relative
reduction in karst geological carbon sinks (Liu et al.
2008a), according to the carbonate equilibrium system,
which would also make karst rivers affected by AMD
exhibit higher pCO, and FCO, (Lv 2018). Secondly, after
AMD is discharged directly into karst surface water with-
out treatment (Fig. 4), the large amount of H™ it contains
cause a degassing reaction with DIC in the receiving water
(HCO;~ + H" — CO,T + H,0) (Huang et al. 2022),
which makes the confluence area of AMD and karst rivers
show higher pCO, (Zhou 2022), and the initial mixing
between AMD and karst water can rapidly cause a DIC loss
of approximately 41.0 £ 11.8% (Cao et al. 2022). More-
over, the dissolved organic carbon in the receiving water
will be adsorbed by Fe/Al hydroxide in AMD (Fig. 4) and
catalyzed by Fe ions, which accelerates the photooxidation

Fig. 4 The AMD effect on the
dissolved inorganic/organic
carbon cycle
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of DOC to inorganic carbon (Li et al. 2024), making the
DOC concentration in the receiving water decrease and
further increasing the CO, release. Finally, heavy metal
ions in AMD can reduce the biological carbon sink process
by affecting the growth of algae and affecting the carbon
morphology and stability in water, thus indirectly affecting
the karst geological carbon sink effect (Hua 2013). These
results have shown that mining has a significant impact on
carbon emissions from karst rivers, but there are still not
enough studies on this aspect. In particular, the CO, release
from karst lakes and reservoirs affected by mining is rarely
reported, and there is a lack of high-precision observation
data, so it is necessary to systematically assess the impact
of mining on the carbon cycle in karst river basins from the
perspective of hydrogeological changes in mines.

5.4.4 Dam construction

The karst region in Southwest China is rich in water
resources and has many canyon landscapes resulting in
large river drops, which make it easy to build dams to stop
water for power generation, making the region an impor-
tant area for hydroelectric power generation from now to
the future (Liu et al. 2009). Previous studies have shown
that CO, emissions from karst reservoirs are subject to
various dynamic processes and changes in reservoir age,
hydraulic retention time (HRT), thermal stratification, and
aquatic biological activities (Fig. 5). The DIC concentra-
tion in rivers draining karst areas is significantly higher
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than that in non-karst areas due to the dissolution of car-
bonate rocks, which gives rise to the higher potential CO,
diffusion fluxes of karst reservoirs. The mean concentra-
tions of COyq decreased in the order of released
water > inflowing water > reservoir water (Han et al.
2018), and this is mainly because the pCO, in the reservoir
bottom increases significantly after the continuous degra-
dation of organic matter in the reservoir sediment, which
also leads to the higher pCO, in the release water (Wang
et al. 2022a). However, during the thermal stratification of
karst reservoirs, a large amount of CO, is absorbed into the
reservoir carbon cycle, indicating that the karst reservoir
has a significant carbon sink role under long-term thermal
stratification conditions (Li et al. 2022a; Pu et al. 2020). In
general, karst reservoirs are likely to be more responsive to
increased anthropogenic activities than non-karst reser-
voirs, which implies that the role of karst reservoirs in the
global warming trend needs to be more accurately assessed.

6 Conclusions and perspectives

In the present paper, a literature review is carried out on
CO, emissions from karst surface ecosystems. Based on
available data, surface aquatic ecosystems play a vital role
in the karst carbon cycle, and it is important to carry out
research on CO, emissions from karst aquatic ecosystems
to accurately evaluate the effect of karst carbon sinks. The
process of CO, transformation in karst surface water
environments is complex and involves multiple internal
and external factors (Fig. 6). However, although much
research work has been carried out and certain results have
been achieved, the understanding of CO, emissions from
aquatic ecosystems is still insufficient due to the com-
plexity of their sources and transformation processes.

Fig. 5 The migration and
transformation of DIC in karst
reservoirs, modified from Pu
et al. (2020) and Wang et al.
(2020a)

Therefore, future research should also be conducted in the
following five areas.

1. Expanding the research area and deepening the under-
standing of the influencing factors of CO, emissions
from karst surface water. Presently, there are relatively
more studies on CO, emissions at the water—gas
interface of karst rivers and lakes (reservoirs) in
temperate zones, while there are fewer research objects
in boreal and tropical karst areas, which cannot reveal
the CO, emission characteristics of the karst surface
water environment in detail and comprehensively. In
addition, the influence of factors such as river width,
water depth, substrate type, and other hydrogeomor-
phic structures of rivers and changes in lake (reservoir)
water level still need to be further explored to improve
the framework of influencing factors.

2. Conduct high-frequency monitoring of CO, emissions

from karst surface water. Previous studies tend to
monitor in short time scales, such as monthly, quar-
terly, and hydrological periods, and most of the
sampling time is conducted during the daytime. Due
to the influence of biological, climatic, hydrological,
and anthropogenic activities, it is difficult to accurately
grasp the short-term and long-term scale variation
patterns of CO, at the karst water—gas interface with
low-frequency sampling activities. Therefore, auto-
mated monitoring instruments or high-frequency sam-
pling should be used in the future to systematically
reveal the spatial and temporal dynamic characteristics
of CO, emissions at the karst water—gas interface and
their response to environmental changes.

3. Understanding the intensity of CO, emissions at the

water—air interface from a watershed scale. Many
studies have estimated only the CO, diffusion fluxes

BCP effects

Water-sedimet interface

Limestone
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Fig. 6 Conceptual diagram
illustrating the environmental
impacts of reservoir,
agriculture, mining, and urban
development pressures on the
CO; cycle in the karst aquatic
ecosystem. Modified after Jane
Hawkey (Integration and
Application Network,
University of Maryland Center
for Environmental Science,
https://ian.umces.edu/media-
library/)

from one karst river or lake (reservoirs) and compared
it with the emission scale of similar research subjects
domestically and abroad. Based on the reversibility of
the carbonate dissolution process, it is necessary to
clarify the proportion of this emission to the karst
geological carbon flux in the basin and to accurately
grasp the effect of reducing the sink. In addition, more
than 70% of global rivers are affected by dam
construction; thus, to clarify the intensity of CO,
emissions from typical karst reservoirs and their
influencing factors, it is necessary to construct a
relevant model and analyze the scale of CO, revenue
and expenditure from reservoirs in karst areas using
spatial autocorrelation.

4. Focus on the interference of human activities on CO,
emissions from karst surface water. Due to the special
geological background, the karst surface water envi-
ronments are especially vulnerable to anthropogenic
contamination. Therefore, it is necessary to conduct in-
depth research on the response of CO, emission fluxes
at the water—air interface of karst aquatic ecosystems
to different types of human activities, and then we need
to understand the spatial and temporal variation
patterns and the main controlling factors to clarify
the contribution of human activities to the DIC and
DOC of karst surface water environments and provide
a basis for optimizing carbon cycle research in karst
areas.
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5. Development of key technologies for water pollution

control coupled with carbon sequestration and sink
enhancement. Those nutrients generated by human
activities are an important factor in enhancing CO,
emissions from karst rivers and lakes (reservoirs).
Because of the large biomass of submerged plants and
their significant carbon sequestration capacity, as well
as their role in improving the water quality, artificial
intervention projects should be considered in the future
to combine the cultivation of submerged plants with
pollution management of the karst water environment.
This method could not only reduce the input and
output of pollutants, increase the diversity of the
watershed landscape, and improve the water quality,
but also increase the carbon sequestration and sink of
karst aquatic photosynthetic organisms.
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