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Abstract Bedrock weathering performs a significant

influence on the evolution of Earth’s critical zone. Car-

bonate rock (dolostone), metamorphic rock (gneiss), and

sedimentary rock (sandstone) geological formations in

Yanshan Mountain, Hebei Province, are taken as objects to

probe the controlling of geological formations on weath-

ering characteristics, migration, and enrichment of ele-

ments as well as structure of Earth’s critical zone under the

identical climate conditions through geological field sur-

vey, analysis on minerals component, element distribution

in the weathering profile. The dolostone geological for-

mation (DGF) is lithologically dominated by dolostone,

characterized by the strongest and predominant chemical

weathering. During bedrock weathering and pedogenesis,

DGF is marked by significant depletion of CaO, MgO, S,

Mn, Mo and enrichment of N, K, Fe2O3, and Zn with

concentrations of P, Cu, and B keeping stable. Shortage of

soil-forming materials and significant loss are driven by

soil erosion, which results in thin regolith and soil. The soil

thickness is less than 10 cm, and the regolith thickness is

less than 30 cm. The vegetation community is predomi-

nantly rock arbor or brush, which is calcivorous and tol-

erant of barrenness. Plagiogneiss is a dominant rock type of

gneiss geological formation (GGF), characterized by the

weakest weathering and fast chemical and physical

weathering rate. GGF is masked by significant depletion of

P, K, CaO, MgO, Fe2O3, Mn, Cu and enrichment of N, S,

Mo, and B, with contents of Zn keeping stable. Both soil

and regolith developed in GGF are relatively thick for one

of the reasons that biotite expands during weathering. The

soil thickness is more than 50 cm, and the regolith thick-

ness ranges from 100 to 200 cm. The vegetation commu-

nity is predominantly high-quality economic forests and

various arbors because of the enrichment of nutrients in

GGF. Sandstone is primarily a rock type of sandstone

geological formation (SGF), characterized by moderate

weathering degree and slow chemical weathering rate. SGF

is marked by significant depletion of P, K, CaO, MgO,

Fe2O3, and enrichment of N, S, Mn, Cu, Zn, and Mo, with

fluctuant changes of Zn and B. The thickness of soil

developed in SGF varies between that of DGF and GGF.

The soil thickness ranges from 30 to 50 cm, and the

regolith thickness ranges from 50 to 100 cm. Chinese pines

are widely spread on the shady slopes of SGF. Research

provides theoretical support for screening dominant eco-

logical resource areas, ecological industry development

and ecological protection and restoration for Yanshan

Mountain, Hebei Province.
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1 Introduction

Yanshan Mountain in Hebei province is located in the

northern water conservation functional area of Beijing-

Tianjin- Hebei region. Nonetheless, there are some

prominent eco-environmental issues in which water and

soil conservation capacity are weak, and soil erosion is

severe (Zhao et al. 2022), which restricts the sustainable

development of the social economy to some extent. The

Earth’s critical zone is defined as the Earth’s surface sys-

tem associated with human economic society, which is the

material carrier of the ecological environment. Therefore,

it’s urgent to improve the understanding of the develop-

ment and evolution of critical zone, contributing to sys-

tematically solving eco-environmental issues and

improving eco-environmental quality. Earth’s critical zone

stemmed from weathering of the parent rock. Under the

synthetic action between atmospheric, water, thermal fac-

tors and biology, hard parent rocks are broken into loose

materials through complex physical and chemical pro-

cesses, providing the material for the sustainable devel-

opment of the ecological system, maintenance and

evolution of the surface life system (Lü and Li 2006; Yang

et al. 2016). Hence, rock weathering performed remarkable

influences on the development of Earth’s critical zone and

the evolution of the ecological system (Brantley et al.

2007; Dixon et al. 2016; Fang et al. 2018; Sun et al. 2020;

Xiao et al. 2021).

The geological formation is the paragenetic assemblage

of rock characterized by genetic association and similar

material composition and structure. Identical geological

formations form a similar geological environmental base-

ment (Łukasz et al. 2016; Shi et al. 2019). On the contrary,

the characteristics and evolution of the basement, including

soil geochemistry, geomorphic landscape, engineering rock

group, and hydrogeology, are significantly different

between different geological formations. Geological for-

mations take a decisive role in the initial ecological envi-

ronmental background, including soil and water conditions,

topography, geologic hazard and vegetation community

(Hahm et al. 2014, 2019). Hence, under identical climate

conditions, geological formations remarkably impact the

development and evolution of Earth’s critical zone and

various ecological environments (He et al. 2020; Wang

et al. 2020; Wei et al. 2020; Yin et al. 2020; Nie et al. 2021;

Zhang et al. 2021). In this paper, dolostone forma-

tion(DGF), gneiss formation (GGF) and sandstone forma-

tion (SGF) in Xinglong-Kuancheng of Yanshanshan

Mountain in Hebei are taken as objects to explore the

weathering features, the process of pedogenesis, as well as

elements distribution, migration, and enrichment in the

critical zone via field survey, sampling of weathering

profile, and geochemical analysis. The impacts of geolog-

ical formation on the development and evolution of Earth’s

critical zone and vegetation community are researched to

provide the geological suggestion for region eco-environ-

mental protection.

2 Study area

2.1 Geographical conditions

The study area is located in the southern Yanshan Moun-

tain, geographically distributed in Kuancheng County and

Xinglong County, Hebei Province. Yanshan Mountain is

broadly defined to be bounded by North China Plain on the

northern, Mongolian Plateau on the southern, Bohai Bay on

the western, and Loess Plateau on the eastern, which is

hosted in the transition belt of the Inner Mongolia plateau

to the North China Plain (Zhao 2007). It is generally

characterized by warm temperate semi-humid continental

monsoon climate, with a mean annual temperature of

ca.10 �C and a monthly mean temperature of -7 �C in

December, the coldest month, and monthly mean temper-

ature of 24 �C in July, the warmest month, and with the

annual rainfall of ca. 631 mm. The vegetations belong to

North China flora, located in the Chinese-Japanese subre-

gion, the Holarctic region. The typical dominant tree spe-

cies are broadleaf forests consisting of Quercus Mongolica

Fisch and Populus tremula Var, davidiana Schneid,

coniferous Pinus tabulaefomis Carr. In addition, Shrubs

are widespread, dominated by Vites incise Bunge, Spiraea

trilobata Linn, Zizyphus spinosus Hu and Corylus hetero-

phylla Fisch.

2.2 Geology setting

The study area is tectonically located in the Mesozoic

continental volcanic sedimentary basin, Yanshan intraplate

orogenic belt, the southern margin of the North China

continent (Zhang et al. 2014; Guan et al. 2018). The strata

lithologies in the area are dominated by carbonate, clastic

rocks, metamorphic rocks and igneous rock: (1) Meso-

proterozoic Jixian group Wumishan Formation (Jxw) and

Changcheng Group Gaoyuzhuang Formation (Chg)

dolomicrite, sandy dolostone, crystal powder dolostone; (2)

Changcheng Group Changzhougou Formation (Chc) and

Dahongyu Formation (Chd) quartz sandstone, Chuanling-

gou Formation (Chch) silty shale, fine sandstone, siltite, as

well as Qingbaikou System Xiamaling Formation (Qnx)

mudrock, shale, siltite; (3) Neoarchean Xiaoguanzhuang

Formation (Ar3gn) and Zunhua Group-complex (Ar3z)

plagioamphibolite, amphibole plagio-gneiss, mixed up with

amphibole plagio- granulite; (4) Jurassic Baihuashan (J3B)
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slablike quartz monzonite, Huangliang (J3HL) slablike

quartz monzonite and Lishuyu (J1L) medium-fine grained

quartz monzonite (Fig. 1a). According to lithology and

mineral components, dolostone geological formation

(DGF), gneiss geological formation (GGF), and sandstone

geological formation (SGF) are predominant geological

formations, which cover an area about 1645 km2, 907 km2,

and 1577 km2 respectively (Fig. 1b).

3 Material and methodology

3.1 Sampling and chemical analysis

A reconnaissance survey along all available access roads

allows for selecting representative exposures for detailed

observation and sampling. A total of 45 critical zones are

selected from three kinds of geological formations in the

region, comprising 20 critical zones in DGF, 16 critical

zones in GGF, and 9 critical zones in SGF. Multiple

samples are systematically collected along a profile going

from bedrock (firm, unaltered or slightly altered protolith)

to regolith (weak, brittle, altered rock material with the

texture and structure of the bedrock) and eventually soil

material for petrographic, geochemical and mineralogical

analyses, including a total of 92 samples in DGF, 85

samples in GGF, and 38 samples in SGF (Fig. 1b).

Each soil sample is a mixture of 3–5 plots collected in

the manner of ‘‘S’’ or ‘‘X’’ and crushed into ten mesh for

major and trace element geochemical analysis and X-ray

diffraction analyses. Multiple soil samples are taken at

intervals of 20 cm in thick soil. The regolith sample is also

a mixture of 3–5 plots within the scope of 5–10 m in the

same regolith layer. Bedrock sample is the mixture of 3–5

(a)

(b)

Fig. 1 Regional geological map a and Regional geological formation map b (modified from 1:250,000 regional geological map) 1. Holocene

epoch; 2. Cretaceous Dabeigou Formation; 3. Jurassic Houcheng Formation; 4. Jurassic Tijishan Formation; 5. Jurassic Jiulongshan Formation;

6. Ordovician Majiagou Formation; 7. Cambrian Mantou Formation; 8. Neoproterozoic Qingbaikou Group; 9. Mesoproterozoic Jixian Group

Tigerding Formation; 10. Mesoproterozoic Jixian Group wumishan Formation; 11. Mesoproterozoic Jixian Group Yangzhuang Formation; 12.

Mesoproterozoic Great Wall Group Gaoyuzhuang Formation; 13. Mesoproterozoic Great Wall Group Dahongyu Formation; 14. Mesoprotero-

zoic Great Wall Group Tuanshanzi Formation; 15. Mesoproterozoic Great Wall Group Chuanlinggou Formation; 16. Mesoproterozoic Great

Wall Group Changzhougou Formation; 17. Neo-archean Zunhua Group; 18. Neo-archean Zunhua Group Xiaoguanzhuang Gneiss; 19.

Mesoarchean Qianan Group; 20. Jurassic Baihuashan quartz monzonite; 21. Jurassic huangliang porphyritic quartz syenite; 22. Jurassic Lishuyu

Medium and fine-grained monzonitic granite; 23. Xinglong Migmatite; 24. Quaternary; 25. Igneous rock geological formation; 26. Dolostone

geological formation; 27. Gneiss geological formation; 28. Sandstone geological formation; 29. Geographical location; 30. Sampling location
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plots within the scope of 5–10 m in the identical lithologic

unit, partly crushed into 200 mesh for geochemical anal-

yses of major and trace elements and partly made into

30 lm-thick standard thin sections for petrographic anal-

yses. SiO2, Al2O3, TFe2O3, MgO, CaO, Na2O, K2O, Mn,

Ti, P and S are analyzed by Wavelength dispersive X flu-

orescence spectrometer (WDX) and other trace elements

by ICP-OES (PE, USA) in Test Center of 514 brigade of

north China geological exploration bureau Co., Ltd. The

analytical quality is controlled by several control samples

in each analytical batch of samples, including reference

material (GBW) for checking the accuracy and repro-

ducibility of the method and 10% duplicated samples for

checking precision. Both accuracy and precision for all the

elements studied are accepted.

3.2 Statistical analysis and weathering index

(1) The data are statistically analyzed by SPSS 26.0 to

explore the element distribution features in the bedrock-

regolith-soil continuum of Earth’s critical zone in three

kinds of geological formations. R-mode factor analysis is

used to interpret a large number of measured variables by

reducing them to a smaller number of independent, theo-

retical variables (factors), therefore R-mode factor analysis

is performed for geochemical associations R-mode factor

analysis.

(2) Composite weathering index (CWI), multi-index

and recapitulative, is applied to measure the weathering

degree based on that weathering process is essentially the

migration and enrichment of elements. CWI reflected the

variances of weathering degree compared with parent rock

so that it can be applied to probe the evolution of weath-

ering degree from bedrock to soil. The Eq. (1) is as

follows:

W ¼ 1� E0 � t þ E

2

� �
� 100% ð1Þ

In Eq. (1), E’ is the equilibrium degree of three kinds of

weathering rate indexes, including SiO2/Al2O3, Al2O3/

Fe2O3 and (Al2O3 ? Fe2O3)/SiO2. t is the mean value of

the leaching coefficient of five types of oxide, including

SiO2, CaO, MgO, K2O, Na2O. E is the equilibrium degree

of seven kinds of oxide’s variable coefficient, including

SiO2, Al2O3, F2O3, CaO, MgO, K2O, Na2O. The calcula-

tion method is detailed and described by Huang (1996).

(3) Mass transfer coefficient, s, as a tool in quantifi-

cationally measuring the quantity of element migration and

enrichment, is well defined and widely accepted (Chadwick

et al. 1990; Anderson et al. 2002). Ti is selected as an

immobile reference element to calculate s of other ele-

ments (Zhou et al. 2005). s [ 0 infers that the element

enriched in the weathering and pedogenesis, whereas the

element migrated and depleted. The Eq. (2) is as follows:

s ¼ ½ðCj;w=Cj;pÞ � ðCi;p=Ci;wÞ � 1� � 100% ð2Þ

where Cj and Ci are the concentration in weight percent of

element j and immobile element i, and the subscripts w and

p refer to weathered material and parent rock, respectively.

4 Results and discussion

4.1 Rock weathering and pedogenesis

4.1.1 Mineralogy

As the study area has long been situated in a relatively

stable tectonic setting, bedrock geology played a decisive

role in the pedogenesis and evolution of Earth’s critical

zone under identical climate conditions. Mineralogical

composition, structure and cement type exerted significant

impacts on soil-forming material, physical and chemical

weathering features, e.g., weathering type, weathering

strength, weathering rate, as well as soil erosion rate

(Zhang and Li 1990; Yuan et al. 2010; Fu et al. 2021).

As the parent materials of DGF, fresh dolostone samples

principally consist of powdery dolomite, micritic dolomite

and a low quantity of terrigenous sandy clastic materials

(Fig. 2a). Dolostone is slightly fragmental, with fractures

being filled with dolomite and opaque mineral (Fig. 2d).

Plagiogneiss is the dominant parent rock type of GGF,

whose mineral compositions are plagioclase, quartz,

amphibole, biotite, and garnet (Fig. 2b). Plagioclase is

moderately altered to sericite or opaque minerals. Biotite

and amphibole are oriented distributed, and slightly altered

to chlorite or opaque minerals along mineral fissures or

margins (Fig. 2e). Sandstone is the primary parent rock

type of SGF, composed of sandy fragments and interstitial

material. The former is mainly subangular rock debris,

quartz and feldspar, slightly oriented distributed, with a

size of 0.05–0.1 mm. Feldspar is primarily plagioclase,

somewhat altered to sericite or opaque minerals. Rock

debris comprised sericitization alteration rock, siliceous

rock, and less quantity of mica. The latter is dominated by

sericitization clay mixed base and siliceous rock (Fig. 2f).

The mineralogical compositions of soil samples are

significantly different between three kinds of geological

formations (Table 1). The most abundant minerals are

feldspars in all soil samples, maybe as a result of relatively

weak weathering in the region. Another main component is

quartz, which is weather-resistant and reserved in the soil

after weathering. Some dolomite and calcite are detected in

DGF but absent in the soil samples of GGF and SGF.

Silicates are occasionally detected and composed of mica,
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chlorite, pyroxene and amphibole, in which amphibole is

richer in GGF than SGF and DGF. Hematite is the domi-

nant iron oxide in the region as it is preferentially formed

in drier and warmer conditions (Clift et al. 2014). Smectite

is the predominant clay mineral in all soil samples, con-

sistent with arid regions being less leaching and domi-

nantly developing smectite-rich soil (Clift et al. 2014).

There are still low quantities of Kaolinite in soil samples of

DGF and GGF, but it is absent in soil samples of SGF.

4.1.2 Weathering characteristics

Composite weathering index(CWI) gradually declined with

weathering depth increasing from soil to regolith in both

weathering profiles of DGF and SGF. Nevertheless, CWI

of soil is generally more significant than that of regolith,

while CWI is characterized by a slight fluctuation in the

profile of GGF. In general, CWI is demonstrated as an

effective proxy for rock weathering strength. Regarding

weathering strength of three kinds of geological forma-

tions, the CWI of DGF is more significant than that of SGF

and much larger than that of GGF (Table 2). It is proven

that in acid soil, the mineral sequence resistant to weather

Fig. 2 Bedrock sample photos and electron photomicrograph of Yanshan Mountain a. Dolostone sample photo; b. Gneiss sample photo;

c. Sandstone sample photo; d.Dolostone electron photomicrograph; e. Gneiss electron photomicrograph; f. Sandstone electron photomicrograph;

Dol. Dolomite; Pl. Plagioclase; Q. Quartz; Hb. Hornblende; Bt. Biotite

Table 1 Major mineral

composition of soils in Yanshan

Mountain

Geological

Formation

DGF GGF SGF

Quartz 21.8 28.9 14.0 21.8 18.32 22.9 9.83 10.8 11.6 19.9 27.8 18.6

Feldspar 49.6 29.2 22.4 47.2 29.2 45.6 49.1 54.5 38.9 54.7 45.4 49.2

Dolomite 6.91 19.1 37.2 12.9 20.1 3.51 – – – – – –

Calcite – 6.88 – – 11.7 2.81 – – – – – –

Mica 2.63 2.89 2.63 2.68 3.26 2.45 1.86 2.48 2.18 4.02 3.02 4.98

Chlorite 2.05 – 1.98 3.05 4.01 2.04 – 2.16 – 2.86 2.94 2.77

Pyroxene 3.26 – – 3.93 – – 4.46 3.95 4.18 5.11 3.61 3.15

Amphibole 1.22 0.820 0.320 1.61 0.690 – 9.66 10.5 2.65 2.09 1.12 2.69

Hematite 1.89 – – 4.12 3.85 4.86 – – 4.12 3.02 3.91 5.74

Smectite 10.6 9.41 18.2 2.69 8.92 15.8 21.5 15.7 27.4 8.29 12.1 13.1

Kaolinite – 2.85 3.34 – – – 3.57 – 3.92 – – –

Unknown – – – – – – – – 5.00 – – –
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is respectively in the following order: carbonate miner-

als \ chlorite \ biotite \ amphibole \ pyroxene \ pla-

gioclase \ potash \ Muscovite \ vermiculite \ quartz

(Hodson et al. 1996; Xu and Ma 2002; Lo et al. 2017) so

that the weathering rate of rocks, widespread in nature,

declined according to the order of carbonate rock, basalt,

granite, and sandstone respectively (Meybeck 1987; Sun

2018). In general, a faster weathering rate contributes to

more substantial weathering. Nonetheless, weathering

strength of GGF is also controlled by the rapid soil erosion

rate, resulting in weaker weathering of profiles, which is

proposed as the ‘weathering limit’. According to the

summary of soil erosion characteristics in Haihe river

basin, Shanxi province, adjacent to Hebei province, the soil

developed in gneiss is characterized by thick regolith and

soil, low content of clay and looseness of structure,

resulting in its being prone to erosion (Zhang et al. 1991).

In terms of specific data, 137Cs tracer and soil erosion

model are applied to measure the soil erosion rate of gneiss

in Yimeng Mountain, Shandong province, indicating the

moderate-strong soil erosion of gneiss (Zhang et al. 2011).

Furthermore, in the study area, the organic matter in gneiss

varies between 0.20 and 4.69, with an average of 1.85. In

conclusion, rapid erosion rates of GGF dominantly result

from loose texture and low content of clay and organic

matters.

A12O3-CaO* ? Na2O-K2O (A-CN-K) diagram has

empirically and kinetically predictable weathering vectors

for various minerals and rock types (Nesbitt and Young

1984). According to the mobility of elements, the chemical

weathering process is sorted into three stages: migration of

Na and Ca, migration of K, eventually migration of Si and

enrichment of Al (Nesbitt and Young 1984; Li et al. 2007;

Gu et al. 2021). As predicted for three kinds of geological

formations, the majority of the samples in the profile of

GGF followed a weathering trend that is adjacent to the A–

CN join (Fig. 3b), while that of DGF reached more closed

to the A apx (Fig. 3a), and that of SGF showed more dis-

solution of K-feldspar (Fig. 3c). We conclude that the

chemical weathering of GGF is dominantly at the stage of

migration of Na and Ca, that of SGF is preliminary at the

stage of migration of K, and that of DGF had a faster rate

of aluminous weathering products conservation. However,

CIA is applied to represent feldspar’s chemical alteration

degree to clay minerals (Nesbitt and Young 1984). In

general, decomposition of feldspar results in the loss of

alkali and alkali earth metals, such as Na, K, and Ca,

accompanied by the formation of clay minerals and

enrichment of Al. However, in the DSF, the enrichments of

alkali metal and alkali earth metal in soil result in

decreased CIA. K may participate in forming clay miner-

als, such as illite at the early stage of weathering, and be

retained in the soil as a composition of mica. In addition, K

and Na have been retained in weathering profile probably

by being absorbed by clay minerals or under the influence

of biological behaviors (Jin et al. 2010). Thus, CIA is

probably not appropriate to represent the weathering

degree of DGF; hence, CIW was applied to measure the

weathering degree of three geological formations.

4.1.3 The weathering and pedogenesis process

Under the semi-arid and semi-humid monsoon climatic

conditions, with an annual rainfall of ca. 631 mm and large

interannual variability, evaporation is far greater than

precipitation. Atmospheric precipitation ran off mainly as

the surface flow and the absence of water infiltrating into

soil resulted in weak eluviation of soil in the region. Hence,

the impacts of climate on parent rock weathering are

unremarkable (Zhang and Li 1990). The impacts of climate

on soil are the hydrothermal conditions and the organic

matter accumulation in the soil through their control of

vegetation growth. As the dominant clay mineral, smectite

is generally formed under warm and seasonally arid con-

ditions, which is the dominant clay mineral in all soils of

three kinds of geological formations (Hong et al. 2012).

Rock weathering is dominated by physical weathering in

the region (Ma et al. 2003), accompanied by relatively

weak chemical and biological weathering. Chemical

weathering is at the early kaolinization stage in the later-

alization process, with the formation of abundant smectite

but a minority of kaolinite in soil. From the perspective of

Table 2 Summary of CWI of Earth’s critical zone in Yanshan Mountain

Profile DGF GGF SGF

Median Ave P value Median Ave P value Median Ave P value

Weak weathering regolith 42.6 (8.30–52.7) 35.2 0.093 38.4 (3.70–48.0) 26.8 0.004 8.9 (2.10–31.1) 14.0 0.239

Strong weathering regolith 42.5 (16.8–51.4) 35.9 0.011 38.3 (6.30–47.0) 27.4 0.001 37.7 (11.9–43.2) 30.4 0.338

Deep soil 39.8 (30.4–53.5) 40.9 0.141 38.6 (27.3–42.6) 33.8 0.000 42.7 (37.5–45.2) 38.7 0.000

Topsoil 43.2 (33.3–53.5) 43.2 0.614 38.4 (37.4–42.5) 34.0 0.000 42.1 (37.0–51.3) 40.7 0.043
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three kinds of geological formations’ weathering features,

chemical weathering played a dominant role during

weathering and pedogenesis of DGF because dolomite is

the single mineral component. Although dolostone is

stronger weathering than gneiss and sandstone, lack of soil-

forming materials and high soil erosion relative to weath-

ering products lead to thin regolith and soil in DGF. Gneiss

had complicated and diverse minerals, such as plagioclase,

biotite and hornblende, so that gneiss is amenable to

physical weathering and a fast chemical weathering rate.

Thus, thick regolith and soil are dominantly developed in

GGF. Nonetheless, the soil structure is loose, and for finer-

grained, lower density minerals such as clays, the lag

between erosion and deposition on the slope may be much

less as they are carried rapidly by soil erosion. In addition,

the water–rock reaction is insufficient and unaltered feld-

spar is rich in soil, resulting in weaker weathering of sus-

tainably young soil (Chen 2019). Quartz is abundant in

SGF, which is more resistant to weathering and keeps

stable according to the Goldich dissolve sequence (Goldich

1938). Cement dissolving and feldspar alteration are

implicated during weathering of SGF, with quartz keeping

the same size and shape (Liao 1997), and eventually, the

weathering rate of sandstone is slow (Spatti júnior et al.

2019). The slow weathering rate and moderate weathering

strength result in the heterogeneity of regolith and soil

thickness of SGF, which are between that of DGF and GGF

in general.

4.2 Weathering influences migration

and enrichment of elements in earth’s critical

zone

4.2.1 Distribution of elements characteristics

In general, the soil is characterized by illuviation of parent

materials, as the soil is developed by in situ weathering of

parent rock in the mountainous area. Minerals composition,

element association, and weathering degree of parent rock

determined the geochemical features of soil to some extent.

Contents of nutrient elements in soil covary strongly with

that in parent rock for the strong affinity of geochemical

elements (Brantley et al. 2007; Hewaisam et al. 2013;

Cheng et al. 2019; Sun et al. 2020).

Macronutrients, including total nitrogen (TN), total

potassium (TK) and sulfur (S), together with micronutri-

ents comprising boron (B) and molybdenum (Mo), are

richer in the soil of SGF than that of DGF and GGF.

Potassium feldspar and mica are dominant K-rich minerals

(Li et al. 2013), allowing the enrichment of K in the soil of

SGF. Macronutrients CaO is most abundant in the soil of

DGF, in accord with the dolomite and calcite being

reserved in the soil. Nevertheless, Macronutrients MgO is

slightly more affluent in the soil of GGF than that of DGF

and SGF, as a consequence of MgO occurring as isomor-

phism in clay minerals and being retained in the soil of

GGF. Macronutrients, including total phosphorus (TP),

together with micronutrients, including iron (Fe2O3),

manganese (Mn), Copper (Cu) and Zinc (Zn), are richer in

the soil of GGF than that of SGF and DGF. Fe2O3 and Mn

are mainly derived from biotite, hornblende and Hematite,

which are enriched in the soil of GGF. In addition, a

minority of Fe2? may occur as isomorphism in clay min-

erals together with Mg2?. It is worth noting that size rules

of multiple nutrient contents in soil, such as TN, TP, CaO,

Fe2O3, Mn, Cu and Zn, bear notable similarity and uni-

formity with regolith and bedrock compared within the

corresponding layer of three kinds of geological forma-

tions. For example, TP is more abundant in bedrock,

regolith and soil of GGF than in the corresponding layer of

DGF and SGF. The strong covariation between nutrient

content in soil and parent rock argues for the inherent

origin of soil nutrients from parent rock (Table 3 and

Fig. 4). On the contrary, the differences between nutrient
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content in three kinds of soil are decreased, driven by

homogenization and redistribution of elements during

weathering and the supergene geochemical process.

Homogenization is defined as the result of the lateral

migration of elements during weathering and pedogenesis,

which is the primary geochemical behavior in the super-

gene system. From the perspective of element content, if

the standard deviation of element content in soil is lower

than that in bedrock, it shows that the homogenization of

the element occurred. Moreover, the degree of homoge-

nization can be measured by the ratio of the standard

deviation of element content in soil to that in bedrock (Hao

et al. 2004, 2005). In DGF, only Mg and Ca are homoge-

nized, with the degree of 0.538 and 0.676, respectively. In

0

1000

2000

3000

4000

5000 500
400
300
200
100
0

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0
5000
10000
15000
20000
25000
30000
35000
40000
45000

-5
0
5
10
15
20
25
30
35
40
45
50

0

4

8

12

16

20

24

28

0

2

4

6

8

10

12
14

0

500

1000

1500

0
20
40
60
80
100
120
140

0
20
40
60
80
100
120
140
160

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0

20

40

60

80

100

120

140

0

400

600

800

1000

1200

Gn Gn Gn

Gn

Gn

GnGnGn

Gn

Gn Gn

Gn

Gn Gn Gn

Gn

Gn

GnGnGn

Gn

Gn Gn

Gn

Gn nGnG

Gn

Gn

GnGnGn

Gn

Gn Gn

Gn

Soil Soil Soil

Soil

Soil

SoilSoilSoil

Soil

Soil Soil

Soil

Regolith Regolith Regolith

Regolith

Regolith

RegolithRegolithRegolith

Regolith

Regolith Regolith

Regolith

Bedrock Bedrock Bedrock

Bedrock

Bedrock

BedrockBedrockBedrock

Bedrock

Bedrock Bedrock

Bedrock

Do Do Do

Do

Do

DoDoDo

Do

Do Do

Do

Do Do Do

Do

Do

DoDoDo

Do

Do Do

Do

Do Do Do

Do

Do

DoDoDo

Do

Do Do

Do

Sa Sa Sa

Sa

Sa

SaSaSa

Sa

Sa Sa

Sa

Sa Sa Sa

Sa

Sa

SaSaSa

Sa

Sa Sa

Sa

Sa Sa Sa

Sa

Sa

SaSaSa

Sa

Sa Sa

Sa

200

Bedrock
Gn Do Sa

(a) (b)

(e)(d)

(c)

(f)

(h)(g) (i)

(k)(j) (l)

Fig. 4 Box plot of soil nutrients content of Earth’s critical zone in Yanshan Mountain a. TN (9 10–6); b.TP (9 10–6–6); c TK (9 10–6); d. CaO

(%); d. MgO (%); f. Fe2O3 (%); g. Mn (9 10–6); h. Cu (9 10–6); i. Zn (9 10–6); j. Mo (9 10–6); k. B (9 10–6); l. S (9 10–6). Gn. gneiss; Do.
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GGF, homogenization occurred to Zn, K, P, Mg, Ca and S

according to the decreasing order of homogenization

degree. In SGF, homogenization occurred to Cu, Zn, Fe, B,

P, K, Ca and Mg according to the decreasing order of

homogenization degree.

4.2.2 Migration and enrichment characteristics

of elements

Bedrock weathering performed remarkable impacts on the

vertical variation trends of elements contents in the critical

zone as the geochemical process of weathering is essen-

tially the migration and enrichment of elements. according

to weathering strength and depth, weathering profile is

classified into top-soil, deep soil, strong weathering rego-

lith, weak weathering regolith and bedrock. Bedrock is

taken as the unweathered samples to calculate the mass

transfer coefficient (Table 4 and Fig. 5). Elements pre-

sented different vertical variation rules.

In all three kinds of geological formations, TN content

gradually increases from regolith to soil because nitrogen

derived from the atmosphere and enriched in soil by bio-

logical nitrogen fixation. In both profiles of GGF and SGF,

TP content gradually decreases from regolith to soil.

Nonetheless, it keeps stable in the profile of DGF. In both

profiles of GGF and SGF, TK content shows a gradual

decrease from regolith to soil. Nonetheless, it gradually

increases in the profiles of DGF. CaO presented significant

depletion in all three kinds of geological formations, with

the greatest depletion in the profiles of DGF. MgO showed

remarkable depletion in the profiles of DGF, but enrich-

ment in regolith and depletion in the soil both of GGF and

SGF. S revealed remarkable depletion in the profile of DGF

but gradual enrichment from regolith to soil in the profiles

of GGF and depletion in regolith and enrichment in the soil

of SGF, respectively. Fe2O3 gradually enriched during the

dolostone weathering process but migrated and lost in both

GGF and SGF. Mn generally showed slight depletion in

both DGF and GGF but significant enrichment in the

profile of SGF. Micronutrients shows different degree of

enrichment in soil or keep stable in the profile except for

Mo in DGF, whose concentrations are influenced by con-

tents of clay minerals or Fe hydroxide, as well as pH value

since they are always absorbed by clay minerals or Fe

hydroxide.

In sum, three kinds of geological formations present

remarkable vertical variation trends. DGF is characterized

by significant depletion of CaO, MgO, S, Mn, Mo and

enrichment of N, K, Fe2O3, Zn with contents of P, Cu and

B keeping stable. GGF is characterized by significant

depletion of P, K, CaO, MgO, Fe2O3, Mn, Cu and

enrichment of N, S, Mo and B, with contents of Zn keeping

stable. SGF is characterized by significant depletion of P,

K, CaO, MgO, Fe2O3, and enrichment of N, S, Mn, Cu, Zn,

Mo, with fluctuant changes of Zn and B.

4.2.3 Migration and enrichment processes of elements

The KMO test coefficient of elements in weathering profile

of DGF and SGF are 0.831 and 0.665, respectively, and

both significance test P values of Bartlett’s test of

Sphericity are less than 0.01, suggesting that R-mode factor

analysis is available for both DGF and SGF. Nonetheless,

the KMO test coefficient of elements in weathering profile

of GGF is less than 0.6, while the KMO test coefficient of

mass transfer coefficient of elements is 0.819, and the

significance test P value of Bartlett’s test of Sphericity is

less than 0.01. Thus, contents or mass transfer coefficients

of SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO, CaO, Na2O,

K2O and P2O5 are selected to perform R-mode factor

analyses for geochemical associations in DGF, SGF and

GGF respectively. Principal component analysis and vari-

max are adopted to obtain varimax factors. Each varimax

factor reflected geochemical associations of closely corre-

lated elements and eventually manifested the geochemical

evolution feature, e.g., migration, enrichment and frac-

tionation of elements and geochemical process during

weathering and pedogenesis.

Three varimax factors of DGF accounted for 91.8% of

the total variance of 10 variables studies (Table 5). Vari-

max factor 1 (F1), dominantly composed of SiO2, Ti2O,

Al2O3, Fe2O3, K2O, CaO, and MgO, described most of the

variations, which clearly indicated the overwhelming

effects of parent materials on the concentrations of these

elements. SiO2, Ti2O, Al2O3, Fe2O3and K2O are positively

associated with factor 1, except CaO and MgO, which are

negatively associated with factor 1. It revealed the main

weathering and pedogenesis in dolostone characterized by

remarkable depletion of CaO, MgO and enrichment of

SiO2, Al2O3, Fe2O3 and K2O. SiO2 and Al2O3 comprised

phyllosilicate minerals. Enrichment of K2O is associated

with SiO2, driven by the development and evolution of clay

minerals. Factor 2 (F2) and factor 3 (F3) mainly comprised

Na2O, P2O5, K2O, and MnO, P2O5, respectively, suggest

other effects on the status of these elements, such as the

supergene biogeochemical process.

It is proposed that weathering and pedogenesis of car-

bonate are divided into two stages. In the first stage, the

foreign and insoluble substances of bedrock gradually

accumulated to form saprolite that continued to weather

and pedogenesis similar to other rocks in the second stage

(Wang et al. 1999, 2015). The geochemical process of

carbonate weathering and pedogenesis is also divided into

three stages, e.g., stage of Si-Al- enrichment and Ca-Mg-

depletion, stage of Fe- Mn- enrichment, stage of Al-en-

richment and Si-depletion. (Zhu and Li 2006; Qiu et al.
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2008). Hence, weathering and pedogenesis process of the

DGF in the study area can be summarized. In the early

stage, the typical mobile elements in dolostone, Ca and Mg

are significantly depleted during the whole weathering

process. SiO2 and Al2O3 comprised clay minerals and are

retained in the soil. Fe and Mn initially occur in calcite,

dolomite and accessory minerals as isomorphism. And

then, with the dissolved of calcite, dolomite and accessory

minerals, Fe is separated out and dominantly occurs as

hydrate, oxide and hydroxide in soil, partly occurring as

isomorphism in clay minerals. According to correlation

analysis, highly significant positive correlations between

Mn and SiO2, Al2O3, Fe2O3, K2O, and Ti are presented,

with all the correlation coefficients more than 0.6 and the

correlation coefficients to Fe being 0.726. During the

weathering process, manganese compounds are partly

oxidized to the hydroxides of Mn3? or Mn4?, and partly

adsorbed by amorphous silica or clay minerals (Song et al.

2008; Tao et al. 2019). The former showed similar geo-

chemical behaviors and evolution to Fe2O3. The mass

transfer coefficient of Mn presents that it is mainly trans-

ferred outside the system during weathering, with the

amount gradually dropping from the bottom. We guess that

the amount of Mn released from Mn-rich dolomites may

exceed the adsorption capacity of amorphous silicon and

clay minerals, resulting in the loss of Mn at the early

weathering stage. In addition, the pH values decrease

gradually from bedrock to soil, with the average pH of the

soil, regolith and bedrock being 7.71, 8.47, and 9.31,

respectively, which contributed to the dissolution of Fe–

Mn oxides or hydroxides. Mn accumulation in the topsoil

by surface plants results in the gap between the geo-

chemical behaviors of Mn and Fe. P has been released from

accessory mineral, such as apatite, and then retained in

weathering profile probably by being absorbed by Fe oxi-

des or under the influence of biological behaviors (Liu

et al. 2016). K and Na has been released from feldspar. The

former may participate in forming clay minerals, such as

illite at the early stage of weathering, and be retained in the

soil as a composition of mica. In addition, K and Na have

been retained in weathering profile probably by being

absorbed by clay minerals or under the influence of bio-

logical behaviors (Jin et al. 2010).

Four factors of GGF interpreted 91.2% of the total

variance of 10 variables studies (Table 5). Factor 1 (F1) is

dominantly composed of SiO2, Al2O3, Na2O and K2O,

which SiO2 and Al2O3 reflect the formation and evolution

of clay minerals, while Na2O and K2O are subject to

migration and depletion as mobile elements. Factor 2 (F2)

is dominantly composed of FeO and MgO, both of that are

occurred in clay as isomorphism and then migrate with the

resolution of the clay minerals. Factor 3 (F3), dominantly

composed of MnO and P2O5, suggest the impactsT
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performed by the supergene biogeochemical process.

Factor 4 (F4), predominantly CaO, revealed the carbonate

dissolutions. The weathering and pedogenesis process of

crystalline rock is divided into four stages, from initial

bedrock breaking to eventual ferralsol forming through

migration of Soluble components, as well as the formation

and evolution of clay minerals (Qiu et al. 2008).

Weathering and pedogenesis of the GGF are analogously

summarized as follows. First of all, acid solution flowed

into bedrock through fractures, resulting in calcite disso-

lution and significant depletion of CaO. Secondly, alter-

ation of plagioclase occurred as an important process in the

weathering of gneiss (Biondino et al. 2020) so that Na2O

and CaO are separated from plagioclase and migrate

through the solution, while SiO2 and Al2O3 comprised clay

minerals (Li et al. 2007). The dissolution of biotite,
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hornblende contributed to the release of FeO, MgO, Na2O,

K2O and CaO. Chloritization and damouritization occur

along cleavage crack and margin of biotite and hornblende

with the formation of iron oxide. Biotite and hornblende

finally turned into clay minerals (Bazilevskaya et al. 2013),

in which FeO and MgO occurred as isomorphism. It is

followed by a minor amount of chlorite and potash feld-

spar. Eventually, when clay minerals are transferred or

dissolved, FeO, MgO, Na2O, and CaO are released and

migrated as various inorganic cations or organic complexes

(Shi et al. 2022). Accessory mineral weathering domi-

nantly explains the Mn and P release at the early weath-

ering stage (Liu et al. 2016). As the nutrient elements

needed for vegetation growth, Mn and P have been influ-

enced by surface biological processes.

Four varimax factors of SGF interpreted 92.4% of the

total variance of 10 variables studies (Table 5). Factor 1

(F1) mainly comprised SiO2, TiO2, Al2O3, Fe2O3. SiO2 is

negatively correlated to factor 1, while others are positively

correlated to factor 1. Aluminosilicates are almost

decomposed so that mobile elements, including Si migrated

and depleted, but Fe2O3 and Al2O3 occur as colloids under

an acid environment (Qiu et al. 2008). Factor 2 (F2) mainly

comprised CaO, Na2O, and MgO, which are prone to

migrate and deplete as soluble components. The former

two elements have been released from plagioclase, while

the latter may be related to the decomposition of sericite

and other accessory minerals. Factor 3 (F3), mainly com-

prised of MnO and P2O5, revealed similar geochemical

behavior and evolutions to GGF. Factor 4 (F4), mainly

comprised of K2O, suggests the decomposition of sericite

or potassium feldspar.

4.3 Weathering influences the spatial structure

of critical zone and distribution of vegetation

community

4.3.1 The spatial structure of earth’s critical zone

As mentioned above, bedrock weathering performed

notable impacts on pedogenesis and eventually controlled

the spatial structure of Earth’s critical zone under identical

climate conditions, such as bedrock fracture, the thickness

of regolith and soil, and morphology of soil profile.

The steep hill is widely distributed in DGF with relative

relief from 100 to 200 m. Dolostone is more resistant to

physical weather because of its hardness and single mineral

component while stronger chemical weathering than gneiss

and sandstone. Soil is directly covered on tough bedrock

without regolith in some typical weathering profiles driven

by the shortage of soil-forming materials. In general, soil

and regolith developed in DGF are relatively thin that the

thickness of the soil is less than 10 cm and regolith is less

than 30 cm. Secondary structural joints, dominated by the

bedding and oblique joints, are developed in bedrock,

which has super continuity or half-continuity. Low moun-

tains and hills are formed in GGF with relative relief of less

than 50 m. Gneiss is composed of various minerals which

allowed strong physical weathering. Complete weathering

profiles, including A, B, C and R layers, are developed in

GGF, in which soil gradually transited to hard parent rock

through loose regolith (Zhang and Li 1990). Both soil and

regolith are thick. The thickness of the soil is more than

50 cm, and regolith ranges from 100 to 200 cm. Nontec-

tonic joints, closely associated with weather, are developed

Table 5 Factor analysis of major elements of Earth’s critical zone in Yanshan Mountain

Factor DGF GGF SGF

F1 F2 F3 F1 F2 F3 F4 F1 F2 F3 F4

SiO2 0.821 0.437 0.191 0.921 0.091 0.28 0.112 -0.761 -0.21 -0.439 -0.319

TiO2 0.767 0.38 0.45 – – – – 0.82 0.426 0.038 0.1

Al2O3 0.892 0.168 0.333 0.917 0.155 0.28 0.085 0.652 0.211 0.346 0.589

Fe2O3 0.871 0.128 0.437 0.474 0.734 0.406 0.016 0.822 0.095 0.299 0.377

MgO -0.743 -0.293 -0.486 -0.031 0.916 0.021 0.326 0.199 0.726 0.374 0.45

MnO 0.388 0.29 0.844 0.406 0.492 0.629 -0.022 0.571 0.18 0.777 -0.02

CaO -0.914 -0.308 -0.04 0.162 0.234 0.069 0.945 0.134 0.914 0.329 0.032

Na2O 0.401 0.873 0.104 0.861 0.156 0.342 0.219 0.302 0.88 -0.003 -0.193

K2O 0.643 0.567 0.389 0.911 0.09 0.177 0.015 0.272 -0.072 0.022 0.936

P2O5 0.096 0.756 0.533 0.38 0.073 0.879 0.109 0.17 0.569 0.718 0.217

Accumulative

variance

contribution/%

75.6 85.7 91.8 42.5 61.8 80.1 92.1 59.9 78 86 92.4
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in bedrock, which is discontinuous. Low hills are devel-

oped in SGF with relative relief of less than 50 m. Quartz

is abundant, and rock debris is dominated by silicalite in

sandstone so that dolostone is weakly weathered in the

region. Soil developed in SGF is a wide range of variations,

in which the thickness of soil ranges from 30 to 50 cm, and

regolith ranges from 50 to 100 cm. Nontectonic joints are

slightly developed in superficial bedrock, which is dis-

continuous and like zigzag and step shape.

4.3.2 Weathering influences the spatial structure

of Earth’s critical zone

Weathering and pedogenesis of dolostone are composed of

the accumulation of foreign and insoluble substances to

saprolite and weathering of saprolite. Based on the in-suit

weathering and pedogenesis of parent rock in the mountain

areas, soil-forming materials are derived from weathering

of bedrock. Carbonate minerals are transformed into

bicarbonate and lost with the solution during dolostone

weathering so that remanent materials are scarce (Zheng

and Wang 2002; Guo and Li 2003). Thus, the soil forma-

tion rate of dolostone is slower while stronger weathering

than gneiss and dolostone (Wang et al. 1999; Han and Liu

2004; Ma et al. 2010; West et al. 2013; Xu et al. 2013;

Song et al. 2020). There is a general consensus that

approximately 8000 years is needed to develop 1 cm soil

in carbonate (Wang et al. 1999; Zhang et al. 2001).

Therefore, thin soil and regolith are predominant in DGF.

Gneiss is composed of various minerals whose expansion

coefficients are significantly different, resulting in gneiss

being subjected to physical weather. In addition, amphibole

and biotite are liable to dissolve because of their small

lattice energy. It is proposed that biotite content took a

significant role in the thickness of soil as the expansion of

biotite is one reason for thick regolith and soil development

(Tian et al. 2019). On the other hand, joints are well

developed in GGF, which contributes to more fissures or

tiny fissures, offering space for vegetation roots. In return,

water, O2 and acid solution permeated downward into deep

bedrock through fissures or vegetation roots, contributing

to thick regolith and soil being developed with the thick-

ness of several meters or even more than ten meters (Hu

1963; Anderson et al. 2007; Bazilevskaya et al. 2013;

Biondino et al. 2020). Weathering rate of sandstone is

slower than that of dolostone and gneiss because of the

high content of quartz and weaker weather (Spatti júnior

et al. 2019). In addition, weathering residues are almost

sedimentations of detritus fragments from the parent rock,

which is rich in sandy and gravel. Soil developed is char-

acterized by abundant clay substance and poor permeabil-

ity after hardening, which is subjected to being eroded

(Zhang et al. 1991). Therefore, thin regolith and soil are

predominantly developed in bedrock outcrops of SGF.

4.3.3 Weathering influences the distribution of vegetation

community

As the lower boundary of Earth’s critical zone, bedrock

exerts potential impacts on the overlying vegetation by

regulating the spatial structure of Earth’s critical zone and

soil property, and thus the suitability as a substrate for

vegetation. On the one hand, bedrock offered most nutri-

ents for vegetation, such as P, Ca, Mg, K and Fe, derived

exclusively from minerals (Castle and Neff 2009). On the

other hand, bedrock influenced water conservation in the

regolith and soil and growth space for vegetation roots by

controlling the thickness, porosity and fracture density of

regolith and soil. Lithologic effects on vegetation are

generally considered secondary to climatic factors such as

the length of the growing season and the amount of

moisture available for plant growth (Hahm et al. 2014;

Jiang et al. 2020). Soil developed in DGF is thin but is

typically rich in Ca. The vegetation community is domi-

nated by rock plants that are calcivorous and more tolerant

of barrenness (Hu 1963), such as Biota Orientalis Endl,

Vites incise Bunge, Spiraea trilobata Linn. The vegetation

community structure is relatively single and the positive

successional rate of the ecological system is slow and apt to

terminate (Yao et al. 2002; He et al. 2009). Soil developed

in GGF is thick, intermediate-acid, and rich in nutrients,

such as Fe, Mn, Zn, P, Cu, so that it is suitable for the

arbors. There are widely high-quality economic forests,

such as chestnut, hawthorn and walnut in GGF. According

to previous studies, high-quality agricultural products are

attributed to specific elements. For instance, high-quality

chestnut, hawthorn, and walnut are respectively inclined to

grow chiefly on Fe–Mn-rich acid soil, Fe–Mn-Zn-rich

soils, and Ca-Zn-rich soils (Wen and Liu 2006; Wang et al.

2020). In addition, Fe and available potassium, followed by

Zn and P, exert the heaviest influences on the fruit quality

of apples according to the research on the apple planted in

gneiss of Taihang mountain (Li et al. 2002). Hence, the

wide spreading of high-quality chestnuts in GGF is also a

natural selection. Soil developed in SGF, slightly acid with

the average pH value of 5.92, shows heterogeneity in soil

thickness that soil on the shady slopes is relatively thick

while the soil in bedrock outcrops is thin. Macronutrients

and micronutrients, such as N, P, K, Mn, Mo, as well as B,

are enriched in the soil so that SGF is suitable for arbors on

shady slopes with thick soil, while it is dominated by shrub

on the sunny slope. It is observed that Chinese pines are

widely spread in SGF, consistent with the summary of

matching species with the site in Taihang Mountain that

Chinese pine generally grows well in granitic gneiss,
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sandstone and shale, especially on the shady slope since

slightly acidic-neutral thick soil is beneficial for Chinese

pine (Yang and Wang 1997).

5 Conclusions

1 Dolostone is the dominant rock type of DGF, com-

posed of powdery dolomite, micritic dolomite and a

low quantity of terrigenous sandy clastic materials.

DGF is characterized by the strongest weathering and

predominant chemical weathering in the region. Pla-

giogneiss is the dominant rock type of GGF whose

mineral compositions are plagioclase, quartz, amphi-

bole, biotite, and garnet. GGF is characterized by the

weakest weathering and fast chemical and physical

weathering rates. Sandstone is the primary rock type of

SGF, composed of sandy fragments and interstitial

material. The former is mainly quartz, feldspar and

subangular rock debris, comprised of sericitization

alteration rock, siliceous rock, as well as less quantity

of mica. The latter is dominated by sericitization clay

mixed base and siliceous rock. SGF is characterized by

moderate weathering. In general, the region’s weath-

ering degree is relatively low, at the stage of kaolin-

ization, early lateralization.

2 Soil is characterized by the illuviation of parent

materials and the inherent origin of nutrients from

parent rock. The migration and enrichment of elements

during rock weathering and pedogenesis of three kinds

of geological formations are significantly different.

DGF is characterized by significant depletion of CaO,

MgO, S, Mn, Mo and enrichment of N, K, Fe2O3, Zn

with contents of P, Cu and B keeping stable. GGF is

characterized by significant depletion of P, K, CaO,

MgO, Fe2O3, Mn, Cu and enrichment of N, S, Mo and

B, with contents of Zn keeping stable. SGF is

characterized by significant depletion of P, K, CaO,

MgO, Fe2O3, and enrichment of N, S, Mn, Cu, Zn, Mo,

with fluctuant changes of Zn and B. R-mode factor

analysis argues for liner correlational relationship

between weathering and pedogenesis with element

geochemical process.

3 Bedrock performed remarkable impacts on the spatial

structure of Earth’s critical zone and the distribution of

vegetation community. Soil and regolith developed in

DGF are thin that the thickness of the soil is less than

10 cm and regolith is less than 30 cm. The vegetation

community is predominantly rock plants that are

calcivorous and tolerant of barren, such as Biota

Orientalis Endl, Vites incise Bunge, Spiraea trilobata

Linn. Both soil and regolith developed in GGF are

thick. The thickness of the soil is more than 50 cm, and

regolith ranges from 100 to 200 cm, suggesting its

suitability for arbors. The vegetation community is

predominantly high-quality economic forests, such as

chestnut, hawthorn and walnut, as well as various

arbors because of the enrichment of nutrients in GGF.

The thickness of soil developed in SGF varies between

that of DGF and GGF which the thickness of soil

ranges from 30 to 50 cm and regolith ranges from 50

to 100 cm. Chinese pines are widespread in thick soil

developed on the shady slope of SGF.
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