ORIGINAL ARTICLE

Are spatial distributions of major elements in soil influenced by human landscapes?

Huan Yu¹ · Zhengwei He¹ · Zeming Shi¹ · Bo Kong²

Received: 6 September 2017/Revised: 1 November 2017/Accepted: 20 November 2017/Published online: 24 November 2017 © Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract The present study attempted to evaluate the influence of human activity on major elements (Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, Fe₂O₃), and to find a method to explore correlations between major elements and human disturbances, according to geospatial theories and methods. The study results indicate that landscapes influence major elements in diverse ways: Al₂O₃ is closely related to road and mine landscapes; strong relationships exist between MgO, Fe₂O₃, CaO, and SiO₂ and roads; Na₂O, SiO₂, and Fe₂O₃ are unrelated to city landscapes; and Na₂O is unrelated to road and mine landscapes.

Keywords Major elements · Spatial distribution · Geographical background · Human landscape · Geographic information system · Remote sensing

1 Introduction

The major elements in virgin soil are generally dependent on the lithology of the parent material and the pedological and geochemical processes of soil formation (Mitchell 1960; Hardy and Cornu 2006). Major element concentrations in soils are influenced by natural factors, such as features of the soil parent material, the processes of weathering and biocycling, and wet and dry atmospheric deposition (Cortizas et al. 2003). Various solutions and

Huan Yu yuhuan0622@126.com chemical indices have been established and applied to the quantitative evaluation of chemical weathering intensity, most of which are based on major element analyses (Qiu et al. 2014). Many studies are based on the assumption that major elements in soil are mainly controlled by natural processes (Taylor and McLennan 1985; Huang and Gong 2001; Zhang 2011; Palma et al. 2013).

However, farming, traveling, mining, industrial production, and human settlements have a critical influence on the geochemical, physical, and biochemical properties of soil, especially on soil elements (Kelepertsis et al. 2001; Caravaca et al. 2002; Takamatsu et al. 2010; Alexakis and Gamvroula 2014; Ye et al. 2014). In the past 20 years, major element distribution in soil subjected to various human disturbances has garnered considerable attention. Li and Thornton (2001) investigated the influence of mining and smelting activities on some major elements (Mn, Fe, Al, Ca, and P) in soils. Popovic et al. (2001) studied the leaching behavior of major elements through coal ash transportation in a power plant. Lucho-Constantino et al. (2005) estimated the distribution and accumulation of major elements in agricultural soils that had been irrigated with raw wastewaters for about 20 years. A comprehensive chemical characterization of 27 fertilizers of different types used in Spain was conducted by Otero et al. (2005) to identify and characterize sources of contamination based on major, minor, and trace element analysis. Reimann et al. (2012) studied the total concentrations of the major elements (Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, TiO₂, MnO, Fe₂O₃, and P₂O₅) in grazing land and agricultural soils, and derived some rules around the influence of human activity on those elements.

Most past research supports the legitimacy of using quantitative geochemical methods according to mathematical statistics to evaluate the influence of human

¹ College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

² Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

activity on soil elements (Cuadrado and Perillo 1997; Villaescusa Celaya et al. 2000; Cevik et al. 2009). Moreover, many studies have demonstrated that element distribution characteristics in soil can be effectively analyzed by geospatial methods (Eze et al. 2010; Bai et al. 2011; Lin et al. 2011; Bastami et al. 2012; Nanos and Martín 2012). The objectives of this paper are to (a) evaluate the influence of human activity on spatial distribution characteristics of major elements, and (b) develop a method for exploring the spatial relationships between major elements and influencing factors based on geospatial theories and methods.

2 Materials and methods

2.1 Location of study area

The study region is $28^{\circ}55'-30^{\circ}27'N$ and $105^{\circ}20'-106^{\circ}22'E$, in Chongqing Municipality (Fig. 1). We chose this region based on convenience of transportation and for its representative economic status, landscape, ecosystem, and presence of conflict between people and land.

2.2 Data

Mine, road, and building landscapes were delineated using remote sensing image interpretation, with buffering regions averaging 2000 m. Landform, stratigraphy, and soil data were obtained through digitizing a thematic map.

In total, 2314 soil samples were gathered at the study area in 2010. Parameters were tested using Geochemical Survey Specifications, conducted by the Chinese Geological Survey.

Fig. 1 Location of study area in Chongqing, China

2.3 Methods

Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, and Fe₂O₃ spatial distribution were obtained by interpolating soil point samples through spatial analysis (Simanton and Osborn 1980) using ArcGIS software.

Geochemical anomalies were based on regional geochemical background values and Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, and Fe₂O₃ spatial distribution data, in terms of the Geochemical Survey Specifications; one example is shown in Fig. 2. Through the comprehensive analysis of element spatial distributions and regional geochemical background values, geochemical anomalies were identified according to the Specifications of the Multi-purpose Regional Geochemical Survey, executed by the Chinese Geological Survey. When sampling data had a normal distribution, the ranges of regional background values were identified by arithmetic mean (X) with 2 standard deviations (S): $X \pm 2S$. When sampling data had a lognormal distribution, the ranges of regional background values were identified by geometric mean (Xg): Xg \times Sg^{±2}. Values that went beyond the change range of backgrounds were considered to be geochemical anomalies. The anomalies were applied to explore these element correlations with

Fig. 2 Distribution of ${\rm Fe_2O_3}$ in context of mines, roads, building lands, and rivers

geographical factors and human landscapes, to explore their influence on major element spatial distributions.

The human disturbance factors were then analyzed by a distance decay function and regression methods. Distance decay describes the effect of distance on cultural or spatial interactions, with the effect decreasing as distance increases. The spatial distributions of the elements were derived and the spatial relationships between the elements in soils and human landscapes obtained. To illustrate correlations between element anomalies and landscapes of human disturbances scientifically, the Pearson method was used to calculate product moment correlation coefficients between the element anomaly area ratio and the distance to landscapes of human disturbance (Pearson 1895). Correlation coefficients have a value between + 1 and - 1, where 1 is total positive linear correlation, - 1 is total negative linear correlation, and 0 is no linear correlation.

3 Results and discussion

3.1 Natural background analysis

The ratios of Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, and Fe₂O₃ anomalies in the different soil types, landform types, and geological times were calculated by spatial analysis (Table 1).

Most of the Al₂O₃, CaO, K₂O, MgO, SiO₂, and Fe₂O₃ anomalies were detected in the landforms of *Uplifting Folded Low Mountains* and *Eroded or Denuded Hills*, which cover more than 97% of this region; more than 74% of the anomalies were detected in *Yellow Soil* and *Paddy Soil*; and more than 76% were in the *Late Triassic–Early Jurassic*. Thus, *Uplifting Folded Low Mountains*, *Eroded or Denuded Hills*, *Yellow Soil*, *Paddy Soil*, and *Late Triassic–Early Jurassic* were considered natural backgrounds in further analysis of human disturbance factors. As more than 99% of Na₂O anomalies were in the *Eroded or Denuded Hills*, *Paddy* or *Purple Soils*, and *Middle Jurassic*, these were considered natural background in further analysis of human disturbances for Na₂O.

At the same time, the *Uplifting Folded Low Mountains*, *Yellow Soil*, and *Late Triassic–Early Jurassic* only occupy 8.76%, 7.69%, and 11.83% of the entire study area, respectively. This indicates that Al_2O_3 , CaO, K₂O, MgO, SiO₂, and Fe₂O₃ might have been affected by certain natural or human factors. Whether or not the anomalies were caused by human interference requires further analysis.

3.2 Human disturbance analysis

Anomaly distribution data of Al_2O_3 , CaO, K_2O , MgO, Na₂O, SiO₂, and Fe₂O₃ and buffer region spatial data were

overlapped to calculate the ratios of anomalies falling in each buffer region; an example is shown in Fig. 3. Correlation coefficients between the anomaly area ratio distributions and the distance to human disturbance landscapes were calculated based on the Pearson method (Table 2).

3.2.1 City landscape

The Al₂O₃, CaO, K₂O, and MgO anomaly area distributions of cities continually fluctuated with distance for all landform, soil, and geological formation types, and the regularities were vague, indicating an infirm relationship. However, Al₂O₃ returned a high coefficient and a low *P* value for *Eroded or Denuded Hills* and *Paddy Soil*; CaO returned a high coefficient and a low *P* value for all four of these natural background factors; K₂O returend a high coefficient and a low *P* value for *Eroded or Denuded Hills*, *Paddy Soil*, and *Late Triassic–Early Jurassic*; MgO returned a high coefficient and a low *P* value for *Eroded or Denuded Hills* and *Late Triassic–Early Jurassic*. Collectively these results preclude confirmation of correlations between the city landscapes and Al₂O₃, CaO, K₂O, and MgO.

Similarly, the distributions of Na₂O, SiO₂, and Fe₂O₃ anomalies also continually fluctuated with distance from landform, soil, and geological formation types, and with vague regularities. However, correlation coefficients of Na₂O were all below 0.33 and *P* values all above 0.52, indicating a weak relationship and suggesting that Na₂O was not affected by city landscapes. Low correlation coefficients and high *P* values of SiO₂ and Fe₂O₃ also reflect a weak relationship and demonstrate that city landscape does not affect SiO₂ and Fe₂O₃. Previous work demonstrated that trace elements presented significantly higher concentrations in urban soils than in control soils, with the highest concentrations correlating with land use type; major elements did not show a similar phenomenon (Khalil et al. 2013).

3.2.2 Road landscape

Al₂O₃, MgO, Fe₂O₃, CaO, and SiO₂ anomalies constantly decreased with distance from roads across landform, soil, and geological formation types, which is consistent with the rule that effects of disturbance decrease further from roads. Moreover, both Al₂O₃ and Fe₂O₃ showed a high coefficient and a low *P* value for all the landform, soil, and geological formation types (Table 2); the correlation coefficients of MgO were all above 0.96 and their *P* values below 0.05 for all the natural backgrounds, indicating a strong relationship and demonstrating that Al₂O₃, MgO, and Fe₂O₃ were affected by roads. Similarly, the correlation coefficients of CaO and SiO₂ were all above 0.93 for

Table 1 The proportions of the anomaly area falling in different geographical backgrounds

Geographical background	Ratio of background	Al_2O_3	CaO	K ₂ O	MgO	Na ₂ O	SiO ₂	Fe ₂ O ₃
Landform								
Uplifting folded low mountains	8.76%	42.14%	64.43%	37.94%	58.18%	0.00%	35.34%	71.00%
Eroded or denuded hills	79.83%	55.45%	34.66%	59.22%	41.32%	99.09%	63.76%	28.91%
Eroded or denuded platforms	2.70%	0.00%	0.00%	0.12%	0.00%	0.91%	0.00%	0.00%
Eroded or denuded low mountains	3.76%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%
Other valley floors	4.95%	2.41%	0.91%	2.72%	0.49%	0.00%	0.90%	0.00%
Soil								
Yellow soil	7.69%	44.79%	65.32%	39.34%	65.07%	0.00%	41.96%	64.36%
Paddy soil	41.32%	31.63%	17.42%	35.14%	17.11%	61.95%	33.57%	19.25%
Purple soil	46.68%	11.92%	8.35%	13.71%	9.39%	38.05%	17.73%	2.63%
Lime soil	3.72%	10.65%	8.91%	11.81%	8.43%	0.00%	6.75%	13.76%
Alluvial soil	0.59%	1.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Geology								
Late Triassic-Early Jurassic	11.83%	76.96%	90.70%	84.61%	90.21%	0.00%	79.75%	80.77%
Late Jurassic	30.77%	1.05%	2.22%	0.35%	4.30%	0.00%	13.17%	0.19%
Middle Jurassic	54.24%	15.23%	2.94%	12.11%	1.52%	100.00%	4.05%	2.10%
Early Jurassic	0.05%	0.38%	0.37%	0.63%	0.29%	0.00%	0.71%	0.00%
Holocene	0.92%	0.14%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Middle Triassic	1.09%	2.14%	2.00%	1.26%	0.87%	0.00%	0.79%	13.96%
Early Triassic	0.55%	3.61%	1.77%	1.03%	2.82%	0.00%	1.53%	2.98%
Pleistocene	0.07%	0.07%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Quaternary system	0.48%	2.78%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Ratio of backgrounds is the ratio of the background area to the entire study area

all the natural backgrounds. The close relationship between Al, Ca, and Mg with roads is supported by previous work (Rybak 2015); these elements originate mainly from windblown road dust (Szczepaniak and Biziuk 2003) or are emitted by traffic (Zechmeister et al. 2006). Furthermore, it has been proven that Al and Fe often originate from the wear of metallic vehicle parts and from road dust resuspension in urban areas (Vuković et al. 2013). In addition, Ca and Fe are considered the most mobile elements and affected by a variety of natural and human factors (Gregorauskiene and Kadunas 2006).

The distribution of K_2O anomalies continually fluctuated with distance in *Yellow Soil*, indicating an infirm relationship. However, the correlation coefficients of K_2O were all above 0.89 and their *P* values below 0.05 for all the landform, soil, and geological formation types. Thus, correlations between the road landscape and K_2O were unable to be clearly confirmed.

 Na_2O anomalies also continually fluctuated with increasing distance for all the landform, soil, and geological formation types and the regularities were vague, indicating another infirm relationship. Low correlation

Table 2 Pearson correlation coefficients between distance to human disturbance landscapes and area ratio distributions of the anomalies

Element	Geographical background	Distance to cities		Distance to roads		Distance to mines	
		Coefficient	P value	Coefficient	P value	Coefficient	P value
Al ₂ O ₃	Uplifting folded low mountains	0.171	0.659	0.897	0.015	0.944	0.001
	Eroded or denuded hills	0.842	0.004	0.924	0.008	0.971	0.000
	Yellow soil	0.374	0.321	0.946	0.004	0.967	0.000
	Paddy soil	0.712	0.031	0.905	0.013	0.952	0.001
	Late Triassic-Early Jurassic	0.611	0.081	0.924	0.008	0.960	0.001
CaO	Uplifting folded low mountains	0.679	0.044	0.946	0.054	0.922	0.009
	Eroded or denuded hills	0.785	0.012	0.991	0.009	0.925	0.008
	Yellow soil	0.673	0.047	0.997	0.003	0.900	0.014
	Late Triassic-Early Jurassic	0.815	0.007	0.970	0.030	0.921	0.009
K ₂ O	Uplifting folded low mountains	0.526	0.145	0.973	0.005	0.986	0.002
R20	Eroded or denuded hills	0.860	0.003	0.923	0.025	0.975	0.005
	Yellow soil	0.667	0.050	0.929	0.022	0.992	0.001
	Paddy soil	0.808	0.008	0.898	0.039	0.941	0.017
	Late Triassic-Early Jurassic	0.777	0.014	0.953	0.012	0.962	0.009
MgO	Uplifting folded low mountains	0.594	0.092	0.960	0.040	0.951	0.004
	Eroded or denuded hills	0.714	0.031	0.981	0.019	0.949	0.004
	Yellow soil	0.644	0.061	0.998	0.002	0.944	0.005
	Late Triassic-Early Jurassic	0.785	0.012	0.975	0.025	0.953	0.003
Na ₂ O	Eroded or denuded hills	0.315	0.542	0.752	0.248	0.229	0.622
	Paddy soil	0.275	0.598	0.868	0.004 0.013 0.008 0.054 0.009 0.003 0.030 0.005 0.025 0.022 0.039 0.012 0.040 0.019 0.002 0.025 0.248 0.132 0.859 0.248 0.132 0.859 0.248 0.069 0.008 0.069 0.005 0.005 0.005 0.038 0.005 0.038 0.016 0.011 0.012	0.177	0.704
	Purple soil	0.328	0.525	-0.141	0.859	0.152	0.745
	Middle Jurassic	0.315	0.542	0.752	0.248	0.229	0.622
SiO ₂	Uplifting folded low mountains	0.205	0.597	0.931	0.069	0.886	0.045
	Eroded or denuded hills	0.554	0.122	0.992	0.008	0.698	0.190
	Yellow soil	0.447	0.228	0.940	0.060	0.912	0.031
	Paddy soil	0.449	0.226	0.991	0.009	0.782	0.118
	Late Triassic-Early Jurassic	0.627	0.071	0.995	0.005	0.977	0.004
Fe ₂ O ₃	Uplifting folded low mountains	0.510	0.161	0.899	0.038	0.991	0.001
	Eroded or denuded hills	0.590	0.095	0.943	0.016	0.979	0.004
	Yellow soil	0.496	0.175	0.957	0.011	0.898	0.039
	Late Triassic-Early Jurassic	0.524	0.147	0.953	0.012	0.962	0.009

coefficients or high P values of Na₂O were observed, indicating an infirm relationship and demonstrating that Na₂O was not affected by the road landscape.

3.2.3 Mine landscape

 Al_2O_3 anomaly distributions constantly decreased with distance from mines across landform, soil, and geological formation types, which is consistent with the rule that disturbance decreases further from mines. In addition, correlation coefficients of Al_2O_3 were all above 0.94 and their *P* values below 0.01 for all the landform, soil, and geological formation types (Table 2), indicating a firm relationship and demonstrating that Al_2O_3 was influenced

by mine landscapes. A strong correlation between Al and mine landscapes or mining activity has been established by several previous studies (Li and Thornton 2001; Santos et al. 2015; Valente et al. 2016).

The distributions of CaO anomalies continually fluctuated with distance in *Eroded or Denuded Hills* and *Yellow Soil*; K₂O anomalies continually fluctuated with distance in Paddy Soil; MgO anomalies continually fluctuated with distance in *Eroded or Denuded Hills*, Fe₂O₃ anomalies continually fluctuated with distance in *Yellow Soil* and *Late Triassic–Early Jurassic*, all indicating infirm relationships. The correlation coefficients of CaO, K₂O, and Fe₂O₃ were all above 0.89 and their *P* values below 0.05 for all the landform, soil, and geological formation types. The Table 3 Relationships of the different landscapes and major element distributions in soil

Landscape	Al_2O_3	CaO	K ₂ O	MgO	Na ₂ O	SiO ₂	Fe ₂ O ₃	
City	Uncertain	Uncertain	Uncertain	Uncertain	Unrelated	Unrelated	Unrelated	
Road	Close	Close	Uncertain	Close	Unrelated	Close	Close	
Mine	Close	Uncertain	Uncertain	Uncertain	Unrelated	Uncertain	Uncertain	

correlation coefficients of MgO were all above 0.94 and their P values below 0.01 for all the landform, soil, and geological formation types. Duly, correlations between the mine landscapes and CaO, K₂O, Fe₂O₃, and MgO were unable to be clearly confirmed.

The distribution of Na₂O anomalies continually fluctuated with distance across landform, soil, and geological formation types, and the regularities were vague, indicating another infirm relationship. The correlation coefficients of Na_2O were all below 0.23 and the *P* values all above 0.62, demonstrating that Na₂O was not disturbed by the mine landscape.

The spatial distribution of SiO₂ anomalies continually fluctuated with distance in Uplifting Folded Low Mountains, Eroded or Denuded Hills, Yellow Soil, and Paddy Soil-an infirm relationship. SiO₂ returned a high coefficient and a low P value in Uplifting Folded Low Mountains, Yellow Soil and Late Triassic-Early Jurassic but a high P value in Eroded or Denuded Hills and Paddy Soil. Thus, correlations between the mine landscape and SiO₂ were unable to be clearly confirmed.

A table showing the relationships of the different landscapes and major element distributions in soil is shown in Table 3.

4 Conclusions

Element anomalies are primarily produced by geographical influences or disturbances involving human activities. On the premise of the natural background analysis, the correlations between Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, and Fe₂O₃ anomalies and human disturbance landscapes, i.e., cities, roads, and mines, were explored to show that major elements are influenced by different landscapes in diverse ways. Al₂O₃ had a strong correlation with road and mine landscapes; MgO, Fe₂O₃, CaO, and SiO₂ had a strong correlation with road landscapes that affected these elements significantly; Na₂O, SiO₂, and Fe₂O₃ had a weak relationship with city landscapes; Na₂O had a weak relationship with road and mine landscapes.

This study proves that a response mechanism exploration of major element migration and human disturbance landscape using geospatial theories and methods is practical. However, correlations between Al₂O₃, CaO, K₂O, and MgO and city landscapes; correlations between K₂O and road landscapes; and correlations between CaO, K₂O, MgO, SiO₂, and Fe₂O₃ and mine landscapes could not be determined through the present methods, and will require further work.

Acknowledgements This study was supported by the Youth Science Foundation (Grant Nos. 41101174 and 41301094), the Lead Strategic Project of the Chinese Academy of Sciences (Grant No. XDB03030507), the Hundred Young Talents Program of the Institute of Mountain Hazards and Environment (Grant No. SDSQB-2015-02) and the Open Fund for Key Laboratory of Geoscience Spatial Information Technology of Ministry of Land and Resources (Grant No. KLGSIT2016-01). We felt grateful to Southeast Sichuan Geological Team for offering us the experimental data.

References

- Alexakis D, Gamvroula D (2014) Arsenic, chromium, and other potentially toxic elements in the rocks and sediments of Oropos-Kalamos basin, Attica, Greece. Appl Environ Soil Sci 2014:1-8
- Bai JH, Cui BS, Chen B, Zhang KJ, Deng W, Gao HF, Xiao R (2011) Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol Model 222:301-306
- Bastami KD, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Bastami MD (2012) Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar Pollut Bull 64(12):2877-2884
- Caravaca F, Masciandaro G, Ceccanti B (2002) Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res 68(1):23-30
- Cevik F, Goksu MZL, Derici OB (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess 152(1-4):309-317
- Cortizas AM, Gayoso EG, Munoz JC, Pombal XP, Buurman P, Terribile F (2003) Distribution of some selected major and trace elements in four Italian soils developed from the deposits of the Gauro and Vico volcanoes. Geoderma 117:215-224
- Cuadrado DG, Perillo GME (1997) Principal component analysis applied to geomorphologic evolution. Estuar Coast Shelf Sci 44(4):411-419
- Eze PN, Udeigwe TK, Stietiya MH (2010) Distribution and potential source evaluation of heavy metals in prominent soils of Accra Plains, Ghana. Geoderma 156(3-4):357-362
- Gregorauskiene V, Kadunas V (2006) Vertical distribution patterns of trace and major elements within soil profile in Lithuania. Geol Q 50(2):229-237
- Hardy M, Cornu S (2006) Location of natural trace elements in silty soils using particlesize fractionation. Geoderma 133:295-308
- Huang CM, Gong ZT (2001) Quantitative studies on development of tropical soils: a case study in northern Hainan Island. J China Univ Geosci 26(3):315-321

577

- Kelepertsis A, Alexakis D, Kita I (2001) Environmental geochemistry of soils and waters of Susaki area, Korinthos, Greece. Environ Geochem Health 23:117–135
- Khalil HEL, Schwartz C, Hamiani OEL, Kubiniok J, Morel JL, Boularbah A (2013) Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. J Soils Sediments 13(3):519–530
- Li XD, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16(15):1693–1706
- Lin YP, Cheng BY, Chu HJ, Chang TK, Yu HL (2011) Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma 163(3–4):275–282
- Lucho-Constantino CA, lvarez-Suarez MA, Beltran-Hernandez RI, Prieto-Garcia F, Poggi-Varaldo HM (2005) A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environ Int 31:313–323
- Mitchell RL (1960) Trace element problems in Scottish soils. Proc Nutr Soc 19:148–153
- Nanos N, Martín JAR (2012) Multiscale analysis of heavy metal contents in soils: spatial variability in the Duero river basin (Spain). Geoderma 189–190:554–562
- Otero N, Vitoria L, Soler A, Canals A (2005) Fertiliser characterisation: major, trace and rare earth elements. Appl Geochem 20:1473–1488
- Palma C, Oliveira A, Valença M, Cascalho J, Pereira E, Lillebø AI, Duarte AC, de Abreu MP (2013) Major and minor element geochemistry of deep-sea sediments in the Azores Platform and southern seamount region. Mar Pollut Bull 75:264–275
- Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc London 58:240–242
- Popovic A, Djordjevic D, Polic P (2001) Trace and major element pollution originating from coal ash suspension and transport processes. Environ Int 26:251–255
- Qiu SF, Zhu ZY, Yang T, Wu Y, Bai Y, Ouyang TP (2014) Chemical weathering of monsoonal eastern China: implications from major elements of topsoil. J Asian Earth Sci 81:77–90
- Reimann C, Filzmoser P, Fabian K, Hron K, Birke M, Demetriades A, Dinelli E, Ladenberger A (2012) The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils of Europe. Sci Total Environ 426:196–210

- Rybak J (2015) Accumulation of major and trace elements in spider webs. Water Air Soil Pollut 226(4):105
- Santos MJ, Tarley CR, Cunha I, Zapelini I, Galunin E, Bleinroth D, Vieira I, Abrão T (2015) Leachability of major and minor elements from soils and sediments of an abandoned coal mining area in southern Brazil. Environ Monit Assess 187(3):1–13
- Simanton R, Osborn HB (1980) Reciprocal-distance estimate of point rainfall. J Hydraul Eng Div 106(7):1242–1246
- Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93(3):221–230
- Takamatsu T, Watanabe M, Koshikawa MK, Murata T, Yamamura S, Hayashi S (2010) Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan. Sci Total Environ 408(8):1932–1942
- Taylor S, McLennan S (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford
- Valente T, Grande JA, Cerón JC, Torre MLDL, Santisteban M, Borrego J, Fernández P, Sanchez-Rodas D (2016) Spatial distribution of major and trace elements in a mining dam: sources and relationships among elements of environmental concern. Environ Earth Sci 75(4):1–11
- Villaescusa Celaya JA, Gutierrez Galindo EE, Flores Munoz G (2000) Heavy metals in the fine fraction of coastal sediments from Baja California (Mexico) and California (USA). Environ Pollut 108(3):453–462
- Vuković G, Urošević MA, Razumenić I, Goryainova Z, Frontasyeva M, Tomašević M, Popović A (2013) Active moss biomonitoring of small-scale spatial distribution of airborne major and trace elements in the Belgrade urban area. Environ Sci Pollut Res Int 20(8):5461–5470
- Ye XF, Bai JH, Lu QQ, Zhao QQ, Wang JJ (2014) Spatial and seasonal distributions of soil phosphorus in a typical seasonal flooding wetland of the Yellow River Delta, China. Environ Earth Sci 71:4811–4820
- Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanusillnar A, Scharf S (2006) Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ Sci Pollut Res Int 13(6):398–405
- Zhang LJ (2011) The element geoehemistry characteristic of weathering and soil forming processes in tropical soil profiles—take soil profiles developed from basalts in Leiqiong area for example. Nanjing University, Nanjing