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Abstract The increasing emission of primary and gaseous
precursors of secondarily formed atmospheric particulate
matter due to continuing industrial development and
urbanization are leading to an increased public awareness
of environmental issues and human health risks in China.
As part of a pilot study, 12-h integrated fine fraction par-
ticulate matter (PM,s) filter samples were collected to
chemically characterize and investigate the sources of
ambient particulate matter in Guiyang City, Guizhou Pro-
vince, southwestern China. Results showed that the 12-h
integrated PM, 5 concentrations exhibited a daytime aver-
age of 51 # 22 pug m > (mean =+ standard deviation) with
a range of 17-128 pg m~> and a nighttime average of
55 =+ 32 pug m~° with a range of 4-186 pg m—>. The 24-h
integrated PM,s concentrations varied from 15 to
157 pg m—, with a mean value of 53 & 25 pg m, which
exceeded the 24-h PM, 5 standard of 35 ug m™> set by
USEPA, but was below the standard of 75 pg m™~, set by
China Ministry of Environmental Protection. Energy-dis-
persive X-ray fluorescence spectrometry (XRF) was
applied to determine PM, s chemical element concentra-
tions. The order of concentrations of heavy metals in PM, 5
were iron (Fe) > zinc (Zn) > manganese (Mn) > lead
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(Pb) > arsenic (As) > chromium (Cr). The total concen-
tration of 18 chemical elements was 13 £ 2 pg m73,
accounting for 25% in PM, s, which is comparable to other
major cities in China, but much higher than cities outside

of China.

Keywords Trace elements - PM, 5 - Source apportionment

1 Introduction

Associations between atmospheric fine fraction (aerody-
namic diameter < 2.5 pg) particulate matter (PM,5) and
adverse human health outcomes have been extensively
reported (Pope et al. 2004; U.S EPA 2009; Stanek et al.
2011; Solomon et al. 2012; HEI 2013). Due to its ability to
penetrate deep into the lungs and its solubility, components
of PM, 5 are considered to be respirable and bio-available
(Raes et al. 2000; Kelly and Fussell 2012). Moreover,
PM, 5 can contain toxic heavy metals such as chromium
(Cr), cadmium (Cd), titanium (Ti), manganese (Mn), nickel
(Ni), lead (Pb), arsenic (As), and zinc (Zn) (Kim et al.
2004; Figueroa et al. 2006). Those PM, 5 associated toxic
elements have been demonstrated to detrimentally affect
cardiovascular and respiratory health risks, as well as pose
a lung cancer risk (Gao et al. 2015a, b; Costa and Dreher,
1997; Kodavanti et al. 1998; Adamson et al. 2000; Lewtas,
2007; Wallenborn et al. 2009). PM, 5 can also remain in the
atmosphere for a considerable period time and transport
over regional and global scales, hence it plays an important
role in the dispersion of its combined toxic elements in the
environment.

Since PM, 5 in ambient air is a broadly recognized
environmental and public health issue, it has received
considerable attention worldwide and is currently regulated



Acta Geochim (2018) 37(2):334-345

335

in most industrialized countries (WHO 2005). Numerous
studies on PM, 5 and its toxic element constituents were
conducted in many countries (Toledoet al. 2008; Crilley
et al. 2014; Morishita et al. 2011; Cristaldi et al. 2013).
China is the world’s largest emitter of atmospheric PMj, s,
and the government has been increasingly taking actions to
reduce emissions (Li et al. 2016). Investigations into
ambient PM, 5 air pollution have focused primarily on
developed capital cities, such as Beijing, Xi’an, Shanghai,
and Guangzhou. Those studies mainly focused on PM, 5
mass and major components, temporal and spatial distri-
bution characteristics, and identification of its sources (Dan
et al. 2004; Huang et al. 2015; Chan et al. 2016; Lai et al.
2016). For example, Huang et al. (2014) revealed that
severe haze events were largely driven by secondary
aerosol formation. Gao et al. (2015a, b) reported the risk
levels for the carcinogenic heavy metals such as
Cr > Cd > Ni, suggesting that Cr may pose a carcinogenic
risk in Beijing daily PM,s. Ye et al. (2003) reported
weekly PM, 5 mass concentrations and components with a
PM,s mass ranging from 21 to 147 pg m . Results
indicated that coal combustion was the largest contributor
to PM, 5 in ambient air in Shanghai. Wang et al. (2006)
reported an average concentration of 98 g m > of PM,
in Guangzhou, observing that the major components were
organic matter and sulfate. Shen et al. (2014) investigated
day-night diurnal variations of water soluble ions in PM;,
in Xi’an and found low NO;/SO,>~ ratios, suggesting that
coal combustion was the major contribution.

With ambient levels of PM, 5 continuing to increase in
China, the identification of responsible sources has become
an area of active and necessary research. In Xi’an, source
apportionment of PM, 5 using the positive matrix factor-
ization (PMF) receptor model showed that motor vehicular
emissions, coal combustion, secondary inorganic aerosol,
and fugitive dust were the major sources, accounting for
80% of total PM, 5 mass (Xu HM et al. 2016). The authors
also indicated that the contribution of coal combustion
decreased from 31% = 5% in 2006 to 24% =+ 3% in 2010,
owing to the coal-fired power plants’ flue gas controlling
implement, while the mobile source contribution remained
essentially the same from 2006 (19% =+ 5%) to 2010
(21% =+ 5%). In Beijing, eight sources of PM,s were
identified, which consisted of biomass burning (11%),
secondary sulfates (17%), secondary nitrates (14%), coal
combustion (19%), general industrial (6%), motor vehicles
(6%), road dust (9%), and yellow dust (Song et al., 2000).
Yang et al. (2015) investigated the chemical composition
of PM, 5 in Beijing and reported that the total mass con-
centrations of metals in PM,s ranged from 0.4 to
132 ugm—>. Gu et al. (2011) investigated chemical
composition of PM, 5 during the winter in Tianjin and
found that SO42_, NO3_, Cl—, and NH** were four major

ions, accounting for 17, 12, 5, and 6% of total PM, 5 mass,
respectively.

Currently, few studies of ambient PM,s have been
conducted in Guiyang, a quickly developing inland capital
city of Guizhou Province, in southwestern China. The
primary goals of this pilot study were to (1) characterize
the temporal distribution pattern of potentially toxic PM
elemental components, (2) investigate elemental composi-
tion and their enrichment factors, and (3) identify potential
emission sources and affecting meteorological factors of
ambient PM, 5 in Guiyang.

2 Experimental methods
2.1 Study domain

Guiyang, the capital city of Guizhou Province, is a large
and rapidly growing inland city in southwestern China
(Fig. 1) with an estimated population in 2014 of approxi-
mately 4.3 million within an area of 8030 km?”. The climate
in Guiyang is characterized as subtropical humid monsoon.
Annual predominant winds are from the northeast and
south in summer/spring and are more northeasterly in
autumn and winter (Xu XH et al. 2016). Major industries in
Guiyang include petrochemical, metallurgy, energy
extraction, electricity generation, and medicine. The sam-
pling site is located at the Guiyang Environmental Moni-
toring Station (EMS), which is a residential area and
approximately 100 m away from a roadway (106°43'03"E;
26°33'56"N). It is also located approximately 7.0 km from
a coal-fired power plant. In addition, a cement production
plant is located to the southwest of the sampling site, and
an iron/steel plant and another cement production plant are
located in the east.

2.2 Methods and materials

A total of 180 twelve hour (12-hr) integrated PM, 5 filter
samples were collected daily during the fall season of
September, October and November using a URG Corpo-
ration (Chapel Hill, NC, USA) Model 2000-01 J Weekly
Air Particulate Sampler (WAPS). The WAPS sampler was
located on the roof of an approximately 30 m high build-
ing. The WAPS sampled at a 16.7 L min~' flow rate onto
47 mm Teflon filters (Millipore, PGTRISLIDE™). During
the sampling campaign, the 12-h integrated samples were
collected from 08:00-20:00 (daytime) and 20:00-08:00
(nighttime). After collection, samples were stored in a
freezer (— 20 °C) waiting for shipment. When the sam-
pling campaign was finished, all filters were shipped at
ambient temperature to U.S. EPA Office of Research and
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Fig. 1 Sampling location in
Guiyang located in
southwestern China and
surrounding major emission
sources
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Development, National Exposure Research Laboratory for
weighing and chemical analysis.

To determine the mass of PM, 5 that was collected, fil-
ters were equilibrated for a minimum of 24-h in a tem-
perature-controlled room at 25 °C with 40% relative
humidity. Filters were weighed before and after sample
collection using a Mettler Toledo (Columbus, OH, USA)
Model UMX2 microbalance. Weights were only deemed
valid if duplicates were within 3 pg of each other on
another day. Sampled filters were individually stored in
petri dishes and sealed in polythene bags for preservation.
Once PM,s mass was determined, sample filters were
analyzed by energy dispersive X-ray fluorescence spec-
trometry (XRF) for total elemental concentrations (Oakes
et al., 2016). For the filters measured by XRF, the limit of
determination (LOD; deposition area = 6.61 cm?, flow
rate = 10 L min~") varied by element from 2.0 ng m > for
Zn to 230 ng m > for Na.

The meteorological parameters were measured from a
10 m meteorological tower operated at the monitoring site
and provided by the Guiyang Meteorological Administra-
tion, using an ambient air quality automatic measurement
system (model Ambient gas MS, USA). The 12-h

@ Springer

integrated wind speed, wind direction, ambient tempera-
ture, and relative humidity were calculated for each filter
sampling period. Precipitation was also obtained at the
sampling site. All study data analyses were performed
using SPSS 11.0 (SPSS Inc., USA) and Microsoft Excel
2007 (Microsoft Corp., USA).

2.3 Quality assurance

The data for the particulate matter samples were acquired
using a Kevex energy-dispersive XRF spectrometer, as
described by Landis et al. (2001). To monitor the accuracy
of the spectrometer, NIST certified reference standard,
Standard Reference Material SRM1833-1111 and SRM
1832-249, were analyzed at the beginning and end and met
the accepted criterion for accuracy. Average sample con-
centrations were generally higher than or comparable to
average lot and field blank concentrations (within the
standard deviation) for all elements measured. The limit of
detection (LOD) was calculated as three times the standard
deviation of a set of field blanks.
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3 Results and discussion
3.1 Characteristics of PM, s

The 12-h integrated PM, 5 concentrations showed a day-
time average of 51 4 22 pg m— (mean =+ standard devi-
ation) ranging from 17 to 128 ug m™> (n = 89), and a
nighttime average of 55 + 32 pg m ™" ranging from 3.7 to
186 pg m > (n = 89), respectively. Nighttime PM, 5 con-
centrations exhibited a wider range in concentration com-
pared to daytime PM,s concentrations. Generally, low
PM, 5 concentrations were observed during episodes of
precipitation, highlighting the importance of rain washout.
The lowest mean daily value of PM, s concentration of
15 pg m— was recorded on October 31 and was the result
of washout from a significant wet deposition event (Fig. 2).
Large variations of PM,s observed in Guiyang were a
function of differences in meteorological dispersion and
the intensity of anthropogenic emissions.

In Guiyang, the daily 24-h (defined as 08:00-08:00)
integrated PM, 5 levels varied from 15 to 157 pg m >, with
a mean value of 53 + 25 pg m >, which was comparable
with our recent average value of 68 4 30 pug m ™ observed
in the fall of 2014 (unpublished data). The daily average
concentrations of PM; 5 in Guiyang were lower than results
obtained in other domestic developed capital cities, such as
Beijing, Shanghai, Guangzhou, and Xi’an, which exhibited
as much as 119 £ 14, 94 £52, 108 =94, and
141 #+ 109 pg m >, respectively (Yan et al. 2016; Zhao
et al. 2015; Wang JZ et al. 2016; Wang et al. 2015).
Compared to cities abroad, however, the PM, s concen-
trations in Guiyang were higher than that those observed in
Steubenville, Ohio (26 £ 11 pg m_3), USA, but lower
than concentrations measured in Korogocho (166 pg m™>),
Kenya, and Agra (71 pg m™>), India (Egondi et al. 2016).

Negative correlations among PM,s and wind speed
(r=-031, p<0.0001) and relative humidity
(r=—0.46, p <0.0001) were observed (Fig. 3) during
this study, and this highlights the influence of meteoro-
logical dispersion on local anthropogenic emissions. Pre-
cipitation accompanied by high wind can remove and
spread a significant portion of PM, 5 from the air due to
below cloud scavenging (Charron and Harrison 2005;
White et al. 2013), and the efficiency of removal is a
function of aerosol size, morphology, and hydrophobicity
(Chate et al. 2003; Jung et al. 2003). Hence, meteorological
conditions will result in changes to the composition of
PM, 5 in the air. Guiyang is a city characterized by high
annual average rainfall between 110 and 130 cm, with up
to 178 days rainy days per year (Xu et al. 2008). The PM, 5
concentrations in Guiyang City were lower than other
domestic cities (Shen ZX et al. 2016; Wang YL et al. 2016)
and might be attributed to the frequent rainfall events.

WHO (2005) has set three interim target values for
PM, 5 of 24-hr, including interim target-1 (IT-1), interim
target-2 (IT-2), and interim target-3 (IT-3). The highest
limit value is 75 pg m > for IT-1. However, air quality
guidelines (AQG) for human health protection recom-
mended a 24-h PM, 5 limit of 25 ng m >, The current U.S.
EPA National Ambient Air Quality Standard (NAAQS) for
24-h integrated PM, 5 is 35 ug m > (USEPA, 2012). Cur-
rently, China MEP has proposed a national target for 24-h
average PM, 5, which is 75 pg m>. Although the overall
study average 24-h  PM,; concentration  of
53 4+ 25 ug m—> observed in Guiyang during the study
period met the WHO’s IT-1 standard, the 24-h concentra-
tion limit was exceeded 20 times. In addition, the observed
concentrations were much higher than the values set by the
AQG and U.S. EPA NAAQS.
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Fig. 3 Ambient PM, 5 concentrations relative to wind speed and relative humidity

3.2 PM, ;5 chemical composition

The measured elemental mass (the total mass of specific
oxides, Table 1) of 18 elements constituted an average of
25%, varying from 22% to 29% of the total PM,s. As
expected, S, and K showed high average concentration of
6.7 uig m—> with a range of 0.61-16 pg m~>, and an
average of 1.7 pg m > and a range of 0.14-8.0 pg m >,
respectively. In general, K in particles mainly originated
from biomass combustion (Yamasoe et al. 2000) and other
anthropogenic sources like iron/steel slag and sintering
operations (Pancras et al. 2013). During the study period,
local agricultural burning of crop residues, such as rice and

corn straws, was observed and resulted in relatively high
concentration of K in particles. Similarly, major elements
of Si, Fe, Ca and Al, which are considered as crustal ele-
ments (Zikova et al. 2016), also exhibit high concentrations
with averages of 2.2, 0.63 and 0.34 pg m >, and range
from 0.16-10, 0.016-3.8 and 0.014-1.2 ng m_3, respec-
tively. The high concentrations combined with large ranges
of Si and Ca may indicate significant contributions of
construction dusts and resuspended mineral particles to
PM, 5 in Guiyang City.

The daily average concentration trend of most elements
was consistent with the corresponding concentration of
PM, 5 mass, suggesting meteorology as one driving factor

Table 1 Monthly average

Parameter  September October November Whole Sampling Period
elemental concentrations
(ng m~>, total mass of specific (n = 28) (n = 31) (n = 30) Mean Range
oxides) in descending order of
concentration S 74 £3.7 6.7 £35 59+35 6.7 £ 3.6 0.61-16
Si 31+ 1.8 23+ 1.8 1.3 £0.87 22+ 1.7 0.16-10
K 19+ 15 1.6 £ 13 1.7+ 13 1.7+ 14 0.14-8
Ca 0.75 £ 0.71 047 £ 0.28 0.69 £+ 0.67 0.63 + 0.59 0.016-3.8
Fe 0.36 + 0.28 0.29 + 0.17 0.39 £ 0.36 0.34 + 0.28 0.011-1.9
Al 0.38 £+ 0.25 0.33 +0.23 0.33 £+ 0.28 0.34 £ 0.27 0.0014-1.2
Na 0.33 £ 0.25 0.26 + 0.15 0.3 +0.17 0.3 + 0.21 0.0058-1.2
Zn 0.4 £0.39 0.19 £ 0.19 0.29 £ 0.36 0.29 £0.33 0.0067-2.2
Mn 0.32 £ 0.31 0.31 £ 0.59 0.13 £ 0.15 025+ 04 0.0023-4
Mg 0.28 £ 0.17 0.23 £0.12 0.24 £ 0.17 0.25 £ 0.16 0.012-0.86
P 0.22 £ 0.18 0.22 £ 0.19 0.12 £ 0.11 0.19 £ 0.17 0.000381.1
Pb 0.17 £ 0.17 0.11 £ 0.11 0.12 £+ 0.08 0.13 £ 0.12 0.0016-0.92
Ti 0.034 £+ 0.026 0.025 £ 0.015 0.031 £ 0.022 0.03 + 0.02 0.00039-0.16
As 0.021 4+ 0.019 0.019 £+ 0.016 0.021 £ 0.019 0.02 + 0.018  0.00087-0.11
Rb 0.014 £+ 0.011 0.01 £ 0.008 0.011 £ 0.009 0.012 £ 0.009  0.000031-0.059
Br 0.011 &£ 0.009  0.0086 £ 0.004 0.014 £ 0.01 0.011 £ 0.008  0.000072-0.052
Se 0.0065 £+ 0.003  0.0053 £ 0.004 0.0079 £ 0.006  0.0066 £+ 0.005  0.000054-0.032
Cr 0.0034 £+ 0.002  0.0035 £ 0.003  0.0033 = 0.003  0.0034 £+ 0.003  0.000012-0.021
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Reported elemental concentrations are those with average values above the limit of detection (LOD) and
blank filter concentrations in 12-h integrated samples
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influencing overall concentrations of PM and composition.
In general, elements measured in the PM, s samples of
Guiyang displayed clear daily variation patterns. It is
assumed that local anthropogenic sources and seasonal
meteorology led to the temporal variability as shown in
Fig. 4. Stable concentrations of Br, which can be associ-
ated with emissions from motor vehicle exhaust (Chan
et al. 1997), were observed, reflecting a steady contribution
of vehicle exhaust emission. All elemental concentrations
were relatively high prior to September 20, and the lower
concentrations were observed beginning in November.
Analysis of meteorological data revealed high rainfall rates
in early November with the total precipitation depth
reaching 71 cm, which may be responsible for the
decreasing concentrations of elements in PM; s.

The comparisons of PM,s elemental concentrations
during daytime and nighttime sampling periods are pre-
sented in Fig. 5a. The daytime average concentration of all
elements was 0.75 & 0.4 ug m > and the average night-
time concentration was 0.92 & 0.6 ug m . Concentra-
tions of elements measured at nighttime typically exhibited
higher concentrations than during the daytime. For exam-
ple, the average concentration of Si was 1.7 + 1.0 pg m >
in daytime and 2.7 & 2 pg m > in nighttime. The higher
concentration of elements observed at night during this
study was consistent with reported results in Jinshan,
Shanghai, China (Zhu et al. 2015) and suggests that noc-
turnal radiative cooling inversions, which often result in
lower nighttime boundary layer heights, decreased atmo-
spheric dispersion and effectively increased concentrations
of local PM, 5 emissions near the surface (Querol et al.
2001; Marcazzan et al. 2001).

Elements exhibited various monthly temporal variation
patterns. Elemental concentration trends of Na, Mg, K, Ca,
Ti, Zn, Fe, and Pb exhibited a pattern of Septem-
ber > November > October (Fig. Sb). While other ele-
ments (e.g., Al, Si, P, S, Mn) showed a different pattern
with the highest observed concentrations in September and
lowest concentrations in November. These observations
may be indicative of seasonal changes in anthropogenic
activities (e.g., local residential coal combustion for heat-
ing in winter) and/or meteorological conditions (e.g., pre-
cipitation and wind speed (Feng et al. 2004)).

Spearman correlation coefficients among elements and
PM, 5 mass concentrations in 12-h integrated samples are
presented in Table 2. Heavy metals such as Ti, Mn, Fe, Zn,
Pb were positively related to PM, s mass concentrations
and to each other, signifying that those elements may have
been emitted from the same source type(s). Concentrations
of S, likely as sulfate (Pandis and Seinfeld. 1992), also
exhibited a strong positive correlation to PM, s, with a
coefficient of determination of 0.905. Sulfate, typically
secondary sulfate, is often a relatively large fraction of

PM, s mass concentrations in areas impacted by major
sources of SO, (Anderson et al. 2004). High concentrations
of PM, 5 in the present study suggest the influence of
emissions of primary PM, s and secondary particle for-
mation from precursors gaseous emitted from local and
regional sources. Coal combustion is a major source of
energy in Guiyang City, and the coal utilized contains
significant quantities of toxic elements such as Pb, As, Hg,
and S (Zhao et al. 2008; Tian et al. 2015). As a result, the
large number of coal-fired power plants, residential coal-
burning boilers, and nonferrous smelting activities, such as
Pb—Zn producing facilities may play a vital role in the high
levels of heavy metals in observed in PM, s during this
study.

3.3 Enrichment factors

Enrichment factors (EFs) (Soto-Jiménez et al. 2003) of
elements relative to the earth’s crust were calculated to
demonstrate the potential contribution of local anthro-
pogenic sources to the observed elemental levels in the
ambient air, which can be applied to identify the potential
sources of crustal and anthropogenic components. The EF
for each PM, 5 element was calculated using Eq. (1):

(Ci/CTi)PMz_s

(Ci/ CTi) Crust
where:

EF; is the enrichment factor of element i, C; is the
concentration of the element investigated in the PM, 5 or
the crust, Cr; is the concentration of reference element (Ti)
in the PM, 5 or the crust.

In this study, the concentrations of elements in the local
soil were calculated based upon the average composition
across the Guizhou Province. In enrichment factor analysis
Fe, Ti, and Al are typically used as reference elements
(Novékova et al. 2016; Wang J et al. 2016). For this study
Ti was chosen as the reference element for calculating
enrichment due to its stability and its propensity to be less
susceptible to deterioration, alteration, and weathering. As
previously suggested (Chester et al. 1999), EF values of
less than 10 suggest that the element has a prominent
crustal source, while an EF value greater than 10 suggests
that a large proportion of that element has anthropogenic
origins.

Results indicate that Se was the most enriched element
in PM, 5, followed by Pb, Zn, Br, and As (Fig. 6). These
elements had high average EFs and ranged from 107 to 10°,
suggesting the predominance of non-crustal sources. The
EFs of Mg, Cr, Ca, K, Mn, Na, and Rb varied from 10 to
10% on average, which suggest an influence from both soil
and non-soil emission sources. The high EFs of Se and As

EF; =

(1)
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Fig. 4 Daily concentrations of chemical elements of PM, 5 collected in Guiyang

suggest a coal combustion source, while high EFs of Pb,
Zn, and bromine (Br) may reflect a large contribution from
vehicle exhaust emission (Chao and Wong 2002). With low
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EFs, Al and Fe are thought to originate mostly from
resuspended local soil. In 2014, our 1 year data verified the
high levels of As in PM, s in Guiyang, with the highest
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value recorded 10 times higher than the limit of
6.0 ng m > for ambient air quality standards in China.
Hence, the high EFs of Se, particularly As in PM;5
observed in the present study require further investigation.

3.4 Principal component analysis

Principal component analysis (PCA) is commonly
employed to reduce the dimensionality of complicated
PM, 5 datasets, grouping related chemical constituents, and
identifying potential sources (Huang et al. 2010). In this
research, Varimax rotated PCA was conducted using SPSS
18.0 software, and results are presented in Table 3. Three
major components were identified with Eigen values
greater than 1 and accounted for a sum of 72% of all
variances in the dataset.

The first component had high loadings of Fe, Ca, Se, Br,
Al, Ti, Mg, Cr, and Zn, most of which were from the
fugitive dust (Kong et al. 2014). This component consti-
tuted 32% of the total variance. These elements were clo-
sely linked with the PM, 5 mass concentrations. In general,
this fugitive dust factor likely includes windblown dust,
agricultural tilling, construction dust, coal flyash, and
resuspended road dust. The element Se is typically con-
sidered an element associated with coal-combustion and
has a high EFs; however, Al, Fe with low EFs, mainly
originated from soil dust (Shen LJ et al. 2016). In general,
Cr is an important pollutant from solid waste treatment
(Kulshrestha et al. 2009). Zn typically comes from various
industrial sources and the abrasion of rubber tires along the
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roads (Rogge et al. 1993), and Br mainly originates from
vehicle exhaust (Chan et al. 1997). Component 1 is gen-
erally considered as typical of urban anthropogenic ele-
ments. Interestingly, Cr, Zn, and Br had high loadings
(0.618, 0.583, 0.772), demonstrating that the solid waste
treatment, industrial emissions, vehicle exhaust, and other
pollution sources may somewhat contribute to fugitive dust
due to long-term deposition of PM, 5 on the surface in this
polluted area (Farinha et al. 2009).

Component 2 features loadings of Mn, Si, Pb, and S,
comprising 19.7% of the total variance. This group of
elements may represent multiple sources of industrial
emissions. Usually, Mn, Pb, and S are regarded as indi-
cators of the discharge from fuel burning and vehicle
emissions (Pacyna and Pacyna 2002). The element Si is an
indicator of emissions from soil dust, road dust, and con-
struction dust.

Component 3 comprises 20% of the total variance and
was mainly associated with Na, As, K, and Rb, which
could be ascribed to solid waste incineration (Pacyna and
Pacyna 2002). Combustion of pressure-treated lumber can
emit As and K/Rb, both of which are associated with
biomass combustion (Tao et al. 2013). In addition, K, Rb,
and As have been associated with iron/steel slag/sintering
operations (Pancras et al. 2013).
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Fig. 6 Enrichment factors (EFs) of elements in PM, 5

Table 3 Varimax rotated principal component factor analysis (PCA)
loading matrix for elements in PM, 5 from Guizhou

Parameter Component

1 2 3
Na 0.283 —0.073 0.794
Mg 0.666 0.423 0.377
Al 0.671 0.303 0.324
Si 0.226 0.747 0.131

— 0.137 0.435 0.524
S 0.37 0.658 — 0.1
K 0.469 0.508 0.618
Ca 0.828 0.231 0.373
Ti 0.772 0.118 0.182
Cr 0.618 0.318 — 0.079
Mn — 0.038 0.826 0.133
Fe 0.854 0.176 0.287
Zn 0.583 0.526 0.191
As 0.371 0.139 0.634
Se 0.843 0.106 0.146
Br 0.772 — 0.005 0.212
Rb 0.475 0.496 0.622
Pb 0.316 0.689 0.343
% Variance 32.5 19.7 20.0

Rotation method: Varimax with Kaiser Normalization (Paatero et al.
2005)

4 Conclusions

This pilot study presents characterizations of ambient
PM, s as well as its elemental constituents in samples
collected in Guiyang, a developing inland city in southwest
China. The 12-h integrated PM, 5 concentrations showed a
daytime average of 51 422 pgm > and a nighttime
average of 55 & 32 pg m >, respectively. Nighttime PM, s

concentrations exhibited a wider range and variance com-
pared to daytime PM, 5 concentrations. The 24-h integrated
PM, 5 levels mean concentrations were 53 £ 25 g m>.
The temporal variation of both PM,s and its chemical
elements suggested the influence of local anthropogenic
activities influenced by daily fluctuations in meteorology.
Enrichment factor analysis indicated that Se, Pb, Zn, Br,
and As likely originated from human activities. The PCA
analysis suggested that fugitive dust, combined sources of
industrial pollution, motor vehicle emissions, and waste
incineration were probably major contributors to atmo-
spheric PM, s in Guiyang. However, additional PM, s
monitoring covering all seasons and source apportionment
modeling will be necessary in the future to further elucidate
and refine the atmospheric PM, 5 sources in Guiyang. In
addition, the development of a local emission inventory
from major sources would facilitate deterministic modeling
runs that could be compared with receptor-based approa-
ches in Guiyang, thus permitting the further identification
of the sources, temporal variability, and chemical compo-
sition of ambient PM,s. Ultimately, studies like these
would assist local agencies in developing cost effective and
efficient emissions management strategies that would
reduce levels of PM to below current standards and better
protect public health.
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