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Abstract In 2013, Chang’E-3 program will develop lunar mineral resources in-situ detection. A Visible and 
Near-infrared Imaging Spectrometer (VNIS) has been selected as one payload of CE-3 lunar rover to achieve this 
goal. It is critical and urgent to evaluate VNIS’ spectrum data quality and validate quantification methods for mineral 
composition before its launch. Ground validation experiment of VNIS was carried out to complete the two goals, by 
simulating CE-3 lunar rover’s detection environment on lunar surface in the laboratory. Based on the hyperspectral 
reflectance data derived, Correlation Analysis and Partial Least Square (CA-PLS) algorithm is applied to predict 
abundance of four lunar typical minerals (pyroxene, plagioclase, ilmenite and olivine) in their mixture. We firstly 
selected a set of VNIS’ spectral parameters which highly correlated with minerals’ abundance by correlation analysis 
(CA), and then stepwise regression method was used to find out spectral parameters which make the largest contri-
butions to the mineral contents. At last, functions were derived to link minerals’ abundance and spectral parameters 
by partial least square (PLS) algorithm. Not considering the effect of maturity, agglutinate and Fe0, we found that 
there are wonderful correlations between these four minerals and VNIS’ spectral parameters, e.g. the abundance of 
pyroxene correlates positively with the mixture’s absorption depth, the value of absorption depth added as the in-
creasing of pyroxene’s abundance. But the abundance of plagioclase correlates negatively with the spectral parame-
ters of band ratio, the value of band ratio would decrease when the abundance of plagioclase increased. Similar to 
plagioclase, the abundance of ilmenite and olivine has a negative correlation with the mixture’s reflectance data, if 
the abundance of ilmenite or olivine increase, the reflectance values of the mixture will decrease. Through model 
validation, better estimates of pyroxene, plagioclase and ilmenite’s abundances are given. It is concluded that VNIS 
has the capability to be applied on lunar minerals’ identification, and CA-PLS algorithm has the potential to be used 
on lunar surface’s in-situ detection for minerals’ abundance prediction. 
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1 Introduction 

Mineral composition and distribution of lunar 
surface is critical for investigating the origin and geo-
logic evolution of the Moon. e.g. the mineralogy in-
formation of craters’ ejecta can be used to investigate 
lunar crustal structure (Tompkins and Pieters, 1999; 
Joliff et al., 2000; Pieters, 1993; Williams et al., 1995; 

Cahill et al., 2009). Besides, the mineral distribution 
of lunar surface will help us improve the hypothesis of 
‘magma ocean’ (Wood, 1975; Solomon and Longhi, 
1977; Elkins-Tanton et al., 2002). The second phase of 
Chang’E Program (Chang’E-3) is to land and perform 
in-situ detection on lunar surface. And one of the sci-
entific goals of Chang’E-3 is to develop lunar mineral 
resources survey and composition in-situ detection 
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(Ouyang Ziyuan, 2005). To achieve this goal, a 
VIS/NIR imaging spectrometer (VNIS) based on 
Acousto-Optic Tunable Filter (AOTF) technique has 
been selected as a payload of Chang’E-3 lunar rover 
(He Zhiping et al., 2011), main parameters of VNIS is 
listed in Table 1. Chang’E-3 would be the first mission 
to carry on hyperspectral imaging spectrometer for 
lunar in-situ detection, the detection mode and data 
processing methods will be different from that of 
ground-based telescopes and satellites. 

VNIS has become an effective approach to char-
acter and predict abundance of lunar minerals and 
elements (Ling Zongcheng et al., 2010, 2011a, b; Yan 
Bokun et al., 2012; Lucey, 2004). Three kinds of pre-
diction approach are commonly used. The first one is 
statistical model based on the links between spectral 
parameters and the mineral constitutes, such as multi-
ple linear regression model (MLR) (Shkuratov et al., 
2003, 2005a, b; 2007), principal component regression 
(PCR) (Pieters et al., 2002; Zhang Xiaoyu, 2008), and 
partial least square (PLS) regression (Li Lin, 2006, 
2007, 2008, 2010; Li Shuai and Li Lin, 2011, 2012). 
The second approach is modified Gaussian model 
(MGM) (Sunshine et al., 1990, 1993, 1998; Nobel et 
al., 2000, 2005), which is a common method to fit 
mineral absorption features based on Gauss curves. 
The last one is radiative transfer models (Cahill et al., 
2007, 2010; Denevi et al., 2008; Li Lin and Li Shuai, 
2010; Lucay, 2004; Wilcox et al., 2006), which has 
taken physical factors (e.g. the particle size, the ma-
turity and the porosity) into account. All methods ref-
erenced above have been applied to evaluate lunar 
soils’ composition, but there are limitations for each 
one. The disadvantage of radiative transfer model is 
that the model is too complex and it is difficult to ob-
tain pure end-member spectra. MGM is time-    
consuming and only effective to the minerals (e.g. 
pyroxene or olivine) whose absorption features are 
obvious. 

Compared with the other two methods’ limita-
tions, statistical analysis methods based on the links 
between spectral parameters and mineral composition 
are widely used for its convenience. In contrast to 
MLR and PCR (Shkuratov et al., 2003; Pieters et al., 
2002, 2006), PLS algorithm (Li Lin, 2006) has the 
advantage of fewer components used and higher pre-
cision. Nevertheless, defects also exist in PLS model 
(Li Shuai et al., 2012). First of all, PLS algorithm 
makes all the bands participated in the model estab-
lishment, making effective removal of redundant 
spectral bands very hard. Then, nonlinear spectral 
mixing is not considered in the process. To solve these 
two problems, GA-PLS and PLS-BPNN algorithms 
are introduced (Li Lin and Li Shuai, 2010; Li Shuai et 
al., 2012), GA-PLS selects effectively a series of 
spectral features data which provide the largest con-

tribution to mineral inversion, while neglect the 
nonlinear spectral mixing factors. After that, PLS- 
BPNN algorithm is developed to overcome these two 
limitations and better results are derived. But it is no-
ticeable that a sufficient number of training samples 
are needed for PLS-BPNN algorithm to achieve a sta-
ble estimation, which should also cover the full range 
of compositions and physical properties (Li Shuai et 
al., 2012). Based on previous works, the focus of the 
study is to establish a new PLS model combined with 
correlation analysis (CA-PLS), which is an effective 
way for selecting a set of effective spectral parameters 
data to predict mineral abundance. Using the ground 
validation experiment data of VNIS, a set of VNIS’ 
spectral parameters highly correlated with minerals’ 
abundance were found through correlation analysis, 
then the Stepwise Regression Analysis method was 
used to find out spectral parameters which makes the 
largest contributions to the mineral contents. At last, 
functions are derived to link minerals’ abundance and 
the selected spectral parameters by PLS.  

2 Data description 

2.1 Ground validation experiment of VNIS 

Before the launch of CE-3 lunar rover, lots of 
ground validation experiments need to be done for 
VNIS and other payloads. The purpose of ground 
validation experiment is to understand the perform-
ance of the instruments, evaluate data quality and 
practice data processing methods. There are two ob-
jectives of VNIS ground validation experiment, one is 
to simulate VNIS’ working conditions on lunar rover 
and evaluate its image and spectrum data quality, an-
other is to build up minerals’ prediction models ac-
cording to the spectral data of seven mixtures com-
posed of different minerals’ proportion. The experi-
ment pipeline is shown in Fig. 1, and Fig. 2 demon-
strates the devices and measurement principle. During 
the process of ground validation experiment, VNIS is 
compared with a standard spectrometer named ASD, 
and these two spectrometers were fixed on the simu-
lated lunar rover at the same viewing geometry. The 
type of ASD we used is Field Spec 3, the performance 
and specification could be known from 
http://www.asdi.com. Calibration target was firstly 
detected by VNIS and ASD at the same time and the 
same geometry. After that, experiment samples were 
changed to be detected until all the samples finished 
detection. The working geometry is as follow: the in-
cident angle of light sources was fixed at 60°, and the 
detection angle of VNIS and ASD was fixed at 45°, 
the azimuth angle between lunar rover and light 
sources is 180°.  



88  Chin.J.Geochem.(2014)33:086–094 
 

 

  

Table 1  Main parameter of VNIS 
Spectral range 450–2400 nm 

Spectral resolution ≤8nm @450–950 nm, ≤12nm @950–2400 nm 

Band 100@450–950 nm, 300 @950–2400 nm 

Corresponding RF frequency 40–180 Mhz 

Field of view  ≥6°×6°(VIS), 3°×3°(NIR) 

Wavelength selection Continuously tunable 

Image signal-to-noise ratio ≥30 

 

2.2 Samples preparation 

During VNIS ground validation experiment in 
the laboratory, we tried our best to simulate its work-
ing conditions on lunar surface. Nevertheless, it turned 
out to be very difficult to simulate lunar soils com-
pletely, especially the maturity and composition. Five 
kinds of mineral whose spectral features are obvious 
and close to lunar minerals were selected as raw ex-
periment samples, namely, hyperthene, diopside, oli-
vine, plagioclase and ilmenite. These minerals were 
firstly ground by the grinder and the median particle 
sizes were controlled at the range of 40–130 μm, 
simulating the median particle sizes on lunar surfaces. 
Major chemical analysis of the minerals is listed in 
Table 2 except ilmenite, the composition of which is 
mainly TiO2. The bidirectional-hemispheric reflec-
tance data of the five minerals were measured in the 
laboratory by standard spectrophotometer (Fig. 3). 
Then hyperthene, olivine, plagioclase and ilmenite 
were selected to be stirred and mixed as the seven 
proportions provided by Table 4, and these seven 
mixtures are final samples used for ground validation 
experiment, which aims to evaluate VNIS spectral 
data quality and practice mineral quantification 
method. Hyperthene is selected other than diopside for 
the reason that the spectrum of hyperthene is similar 
to the pyroxene on lunar surface.  

2.3 Data processing 

This section contained VNIS and ASD data proc-
essing. The steps and pipeline of VNIS data process-
ing are shown in Fig. 7, and dark current subtraction, 
radiance calibration and reflectance conversion are 
included. VNIS measured dark current data before and 
after sample detection, so the mean values of the dark 
current data could be subtracted when the detection 
finished. After dark current subtraction, radiance cali-
bration is needed to change the raw data to radiance 
using coefficients, that were derived from the radiance 
calibration experiment of Shanghai Institute of Tech-
nical Physics, from pre-flight radiance calibration ex-
periment. At last, reflectance conversion must be done 
because reflectance data reflects the characters of the 
minerals and is fundamental for mineral prediction 

models’ establishment. We could calculate VNIS 
bidirectional reflectance factor (BRF) data with the 
methods employed by Mars’ Pathfinder, Sprit and 
Opportunity (Reid et al., 1999; Bell et al., 2003, 
2006). 

 

 
Fig. 1. VNIS’ ground validation experiment pipeline. 

 

 
Fig. 2. Experiment devices and measurement principle. 

 
Fig. 3. Bidirectional-hemispheric reflectance features of the five 

minerals in the laboratory. 
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Table 2  Chemical composition measured for the raw mineral 
Mineral SiO2 TiO2 Al2O3 Cr2O3 FeO NiO MnO MgO CaO Na2O K2O Total 

Hyperthene 53.64 0.12 3.72 0.23 17.31 0.04 0.29 24.73 0.49 0.02 0.01 100.60

Diopside 55.72 0.08 0.16 0.53 1.24 0.02 0.06 17.22 24.45 0.37 0.01 99.86

Olivine 41.89 0.02 0.02 0.01 8.62 0.38 0.13 49.18 0.06 0.02 0.01 100.31

Plagioclase 56.14 0.03 27.62 0.01 0.08 0.01 0.01 0.02 10.44 5.13 0.37 99.87

 
Table 3  Mineral proportion of seven mixture 

Mineral proportion (wt.%) 
No. 

Hyperthene Olivine Plagioclase Ilmenite 

Mixture 1 10 20 30 40 

Mixture 2 40 30 20 10 

Mixture 3 20 40 10 30 

Mixture 4 30 10 40 20 

Mixture 5 45  0 50  5 

Mixture 6 60  5 35  0 

Mixture 7  0 15 70 15 

 

 
Fig. 4. The final mixture samples prepared for the experiment (from left to right, mixture 1 to 7). 

 

 
Fig. 5. VNIS’ ground data processing pipeline. 

 
The steps of ASD data processing are similar to 

that of VNIS, which also contained three steps: dark 
current subtraction, radiance calibration and reflec-
tance conversion. The reflectance spectrum of seven 
mixtures obtained by VNIS and ASD under the same 
conditions is plotted in Fig. 8. We can concluded that 
the shape and values of VNIS reflectance is close to 
that of ASD from Fig. 8 a and c, which demonstrate 
that the quality of VNIS spectral data is well and ab-
sorption features of minerals can be characterized ef-
fectively. But Fig. 8a also demonstrates that there is 
stronger spectral jitter in VNIS spectral range of 
450–900 nm than other wavelengths. This is mainly 
caused by the reason that the intensity of light source 
in the laboratory is weaker than sunlight in the spec-
tral range of 450–950 nm, and the bands’ integrating 
time parameters of VNIS’ detector (CCD) in this 

spectral range are set as the intensity of sunlight, 
which lead to the intensity every band received is 
weak, so VNIS signal to noise ratio (SNR) was 
brought down. To remove this spectral jitter, 
five-point linear smoothing algorithm was used to 
VNIS’ original reflectance data (Fig. 8b), and the data 
after smoothed was used to establish models for min-
erals’ prediction.  

3 CA-PLS model description and application 

Three steps are needed for CA-PLS to predict 
mineral abundance in the mixture, they are correlation 
analysis, stepwise regression analysis and PLS mod-
eling. 

3.1 Correlation analysis and stepwise regression 

Correlation analysis (CA) is a simple and effec-
tive statistical approach which analysis the closeness 
between two correlated variables, which is expressed 
as correlation coefficient. There are three kinds of 
correlation coefficients, Pearson, Spearman and 
Kendall. Pearson correlation coefficientis can be cal-
culated by the following formula:  

2 2 2 2( ) ( )

i i i i

i i i i

N x y x y
r

N x x N y y




 

  
       

(1)
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where r is Pearson correlation coefficient, N is the 
number of samples data, xi and yi represent the two 
variables, spectral parameter and mineral’s proportion 
in the mixture, respectively. 

VNIS is a hyperspectral instrument which con-
tained 400 bands. High correlation existed among 
these bands’ reflectance, so CA is firstly used to select 
a set of bands’ reflectance and spectral parameters 
data as the independent variables show high correla-
tion with the dependent ones of mineral contents in 
the mixture. Then, Stepwise Regression Analysis is 
applied to find out five bands’ reflectance or spectral 
parameters which make the largest contributions to the 
mineral contents. The five bands’ reflectance or spec-
tral parameters data selected will be involved in the 
PLS model establishment. 

 

 
Fig. 6. Reflectance features comparison of VNIS and ASD for the 

seven mixtures. (a) Reflectance data obtained by VNIS; (b) reflec-

tance data obtained by VNIS smoothed by five-point linear smooth-

ing algorithm; (c) reflectance data obtained by ASD (There is a con-

junction between ASD two detectors near 1000 nm, so there is a 

spectral at some wavelengths near 1000 nm). 

 
The spectral parameters included bands’ reflec-

tance, band ratio (or color index), absorption depth 
and bend data. Band ratio is the ratio of two bands’ 
reflectance, absorption depth is the distance between 
the lower point of the wave trough to the normalized 

envelope (Fig. 7), and the parameter of bend to char-
acter the absorption feature near 1000 nm is defined 
by Pieters et al.(2006). 

 

 
Fig. 7. The definition of absorption depth. 
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The spectral absorption features of the seven 
mixtures are mainly existed near 1000 and 2000 nm. 
As the absorption depth defined in Figure 7, when 
calculating the above spectral parameters, we need to 
specify the beginning band, the trough band and the 
end band of the seven mixtures’ absorption. So the 
bands of beginning, trough and end of the absorption 
near 1000 nm are λ1=705 nm, λm=905 nm, λ2=1105 
nm, and for the absorption of 2000nm, bands of the 
beginning, trough and end of the absorption are 
λ1=1555 nm, λm=1955 nm, λ2=2350 nm. 

3.2 PLS modeling 

Partial Least Square (PLS) is a powerful regres-
sion method which helps to set up relationships be-
tween mineral composition and spectral parameters. 
The details of the algorithm have been described by Li 
Lin (2006). The advantages of PLS are as follow: 

(1) Regression modeling can be made under the 
condition of the independent variables’ multiple cor-
relation. 

(2) Regression modeling is allowed under the 
condition that the number of sample data is less than 
number of independent variables. 
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(3) The final regression model will contain all of 
the original variables. 

Due to the limitation of sample’s amount, the 
number of the dependent variables (only seven abun-
dance data for every mineral) is far less than the inde-
pendent variables (400 bands reflectance data and 
other spectral parameters), so PLS algorithm was se-
lected and used to establish relationship between de-
pendent variables (the mineral abundance in the mix-
ture) and independent variables (spectral parameter 
data). The final model formula is as follow: 

 
_ 0 1 1 2

2 3 3

_

_ _ ... _n n

Mineral abun c c Spec p c Spec

p c Spec p c Spec p

    
   

 (5) 

 
where Mineral_abun is one kind of mineral abun-
dance, Spec_p1, Spec_p2, Spec_p3, …, Spec_pn are 
spectral parameters, and c0, c1, c2, c3, cn are regression 
coefficient. 

Root mean square error (RMSE) is used to dem-
onstrate the model accuracy, and the relative predic-
tion error (δ) is calculated to indicate which minerals 
can be predicted better. 
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where n is the number of samples, here n=7, i is the 
index of the sample, yi is mineral prediction value, yi  
is the actual mineral relative abundance in the mixture, 
and M is mean mineral abundance value of all the 
seven samples. 

4 Results and discussion 

The prediction results of the four minerals are 
acquired, every mineral’s five final spectral parame-
ters are selected after correlation analysis and stepwise 
regression, and the prediction coefficients are derived 
by PLS modeling. During the process of the four min-
erals’ modeling, we selected five of the seven mix-
ture’s spectral and composition data as training data, 
the other two mixtures’ spectral and composition data 
were validation data. The four minerals’ model equa-
tions are as follow. 

4.1 Pyroxene model 

The pyroxene abundance of five training data has 
significant correlation with many spectral parameters. 
For example, the correlation coefficients between py-
roxene contents and absorption_depth_1000, 2000, 

band ratio 900/750 nm, bend_1000, 2000 nm are 
higher than 92%. As the proportion of pyroxene 
raised, the absorption depth of 1000 and 2000 nm 
would increase. The five spectral parameters were 
selected as independent variables. And the PLS model 
quantifying pyroxene content in the mixture is as fol-
low: 

Pyroxene=72.805×(Aborption_depth_1000)－ 
160.468×(Aborption_depth_2000)－120.526× 
(band_900/750)+118.929×(Bend_1000 nm)+ 

36.788×(Bend_2000 nm)－13.652                 
(8) 

4.2 Plagioclase model 

Plagioclase abundance data correlated highly 
with the spectral parameters of band ratios. As the 
proportion of plagioclase increased, the values of band 
ratios would decrease. We selected five band ratio 
parameters as independent variables, and set up a PLS 
model to quantify plagioclase contents in the mixture. 

 
Plagioclase=485.670+106.189× 

(band_750/490)－471.893×(band_750/500)+ 
405.951×(band_750/520)－422.379× 

(band_750/530)-13.645×(band_750/540)              
(9) 

4.3 Olivine model 

Olivine abundance correlated highly with some 
band reflectance data. As the proportion of olivine 
grew, the values of band reflectance would decrease. 
We selected five bands reflectance by correlation 
analysis and stepwise regression as independent vari-
ables, and established the PLS model to quantify oli-
vine contents in the mixture. 

 
Olivine=76.458+1871.693× 

(band_500)-1651.318×(band_690)+592.573× 
(band_745)－1185.73×(band_830)+ 

302.322×(band_1000) 
(10) 

4.4 Ilmenite model 

Ilmenite composition correlated highly with band 
reflectance data. As the proportion of ilmenite went up, 
the values of band reflectance would decrease. We 
selected five band reflectance data as independent 
variables, and set up a PLS model to quantify ilmenite 
contents in the mixture. 

Ilmenite=61.755+163.522×(band_1050)+ 
226.069×(band_1550)+480.772×(band_1750) 
-728.384×(band_2000)-229.824×(band_2350)              

(11) 
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Fig. 8. Comparison of the four minerals abundance with those predicted from CA-PLS model. (a) Pyroxene model: mixture 3 and 5 were valida-

tion data, and the other five are training data; (b) plagioclase model: mixture 2 and 6 were validation data, and the other five are training data; (c) 

olivine model: mixture 1 and 4 were validation data, and the other five are training data; (d) ilmenite model: mixture 2 and 4 were validation data, 

and the other five are training data. 

 

Comparison of the four minerals abundance with 
those predicted from CA-PLS model are shown in  
Fig. 8. The training samples are represented by open 
circles, while the validation sample are characterized 
by the solid dots. The sold line is 1:1 correlation line.  

 
Table 4  The RMSE and relative errors calculated in the 

prediction of the four mineral abundance 
PLS prediction 

Mineral component 
RMSE Relative error (%) 

Hyperthene 0.04 13.79 

Plagioclase 0.03 8.33 

Olivine  0.13 75.85 

Ilmenite 0.03 17.5 

 
The RMSE and relative prediction errors are 

listed in Table 4. Generally speaking, the prediction 
results of hyperthene and plagioclase are satisfactory 
with the low level of RMSE (0.04 and 0.03), and the 
relative prediction errors are small for the values of 
13.79% and 8.33%. The prediction result of ilmenite 
is passable, with the values of RMSE and relative er-
ror are 0.03% and 17.5%. But the prediction result of 
olivine is undesirable, with the highest relative error 
value of 75.87%. 

The undesirable result of olivine prediction is 
mainly caused by the following reasons: (1) correla-
tion between olivine abundance and spectral parame-

ters is not so significant as that of other minerals, 
which makes the olivine’s prediction model is not 
precise; (2) The number of training data for statistical 
analysis is only five groups, the estimation results of 
which may be stable but they are unlikely optimal, the 
additional samples which extend the abundance range 
of training data may improve the prediction results. In 
this experiment, the amount of our sample is limited 
and the size of our sample must cover VNIS field of 
view, so we have to make seven mixtures. (3) the 
models still not consider non-linear spectrum effect 
between the spectral parameters and the abundance 
data. 

5 Conclusions 

Take advantage of seven mixtures’ spectral data 
and mineral composition data, correlation analysis and 
partial least square algorithm were used to set up four 
minerals abundance prediction models. The root mean 
square errors and relative prediction errors were cal-
culated to evaluate the accuracy. Results demonstrate 
that the models can well predict pyroxene, plagioclase 
and ilmenite’s abundance, while the results of olivine 
are not desirable, which was further discussed. 

More work is still needed to evaluate VNIS’ ca-
pability and improve the algorithm under study. 
Non-linear spectrum effect will be considered in the 
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future. The main purpose of this paper is to evaluate 
the spectral data quality of VNIS and validate the 
CA-PLS prediction algorithm. The landing site of 
CE-3 lunar rover has been selected in the district of 
Sinus Iridum, which is an impact basin filled with ba-
salt. Considering the difference between our ground 
validation sample and lunar real soils, CA-PLS algo-
rithm will be used to set up lunar minerals’ prediction 
models which are suitable for VNIS’ bands based on 
the lunar highland and mare soils’ reflectance and 
composition data characterized by the Lunar Soil 
Characterizations Consortium (LSCC). In conclusion, 
VNIS is not only can be used to distinguish the lunar 
main minerals, CA-PLS algorithm also has the poten-
tial to predict lunar minerals’ abundance. 
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