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Abstract

Desert rhizoliths are generally found as weathered, broken
and scattered samples on dune field surface, but rarely in-
situ in their initial states buried under the soil of desert in
the Badain Jaran Desert, northwest China. This study offers
an assessment of the morphological, mineralogical, and
chemical properties of intact and in-situ rhizoliths found
in soils of swales and depressions among dune chains.
The characteristics of these rare and precious objects were
assessed using optical polarizing microscopy, cathodolumi-
nescence, scanning electronic microscopy, radiocarbon dat-
ing, and stable isotopic analyses, providing the opportunity
for discussion of the rhizolith formation mechanisms and
associated environmental conditions. Field and laboratory
investigations showed that the in-situ intact rhizoliths were
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formed only in the places where Artemisia shrubs are liv-
ing, and the remaining root relicts within rhizoliths belong
to this species. The spatial distribution of rhizoliths also
suggested that low topographic positions on a landscape
provided soil moisture, and redox environments favored
rhizolith formation. A semi-closed redox environment in the
subsoil at swales and depressions, where water is always
present, along with the sandy soil texture, facilitated fast
water percolation to deeper depths and condensation. Such
a soil environment not only provides water for Artemisia
growth, but also for the weathering of minerals such as
felspars and calcite from primary carbonates, and for the
decomposition of root relicts. Furthermore, harsh climatic
conditions, such as strong winds and solar radiation, led
to water evaporation through dead root channels and trig-
gered the calcification along the root relicts. The entrapped
lithogenic carbonates and to a lesser extent the decomposi-
tion of Artemisia roots provided the carbon sources for the
rhizoliths formation, while the weathering of soil minerals,
particularly feldspars and carbonates, was the main source
of Ca. Rhizoliths in the Badain Jaran desert formed rela-
tively quickly, probably over a few soil drying episodes.
This led to the entrapment of a large quantity of lithogenic
carbonates (more than 90% of carbon) within rhizolith
cement. The re-dissolution of the entrapped lithogenic car-
bonates in rhizolith tubes should be taken into account in
the paleoenvironmental interpretation of '“C ages, the lat-
ter suggesting that rhizoliths formed during the Holocene
(~2053 years cal BP, based on root organic relicts).

Keywords Rhizoliths - Calcification - Leptic regosols -
Artemisia roots - Decomposition - Soil moisture

1 Introduction

Soil is at the heart of the Earth’s critical zone (Chorover et
al. 2007). Biomineralization, including pedogenic carbonate
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formation, is a common feature of soil evolution. It occurs
not only in soil but also around or within roots, separately
or concomitantly. Carbonate rhizoliths are one type of pedo-
genic carbonates (Lambers et al. 2009) where mineraliza-
tion takes place around roots in modern (Holocene) soils
and paleosols (Sun et al. 2019a, b, 2020; Huguet et al. 2020;
Brazier et al. 2020).

Rhizoliths are generally defined as ichnofossils (root
traces) or fossils (petrified roots) in geology, taphonomy,
and paleontology (Kraus and Hasiotis 2006; Barta, 2011).
Phytocretions (minerals precipitate form an external mold
of a plant, other than the root. Liutkus 2009) are similar to
rhizoliths and formed around plant stem in standing water
above sediments. In arid environments, the fluctuations
in water table levels, pedogenesis, and erosive dynamics
expose the plant remains to subaerial weathering, resulting
in low rates of preservation of plant macrofossils (Gastaldo
and Demko 2011) and explaining the rare presence of intact
rhizoliths in such settings. However, rhizoliths are impor-
tant indicators of paleo- and modern plants (Nascimento et
al. 2019), especially in desert soils. Rhizoliths can be used
as environmental markers of humidity, drainage, and local
topography (Kraus and Hasiotis 2006; Li et al. 2015).

The formation mechanisms of rhizoliths have been
widely discussed (e.g., Liutkus et al. 2005; Kraus and
Hasiotis 2006; Owen et al. 2008; Gocke et al. 2010, 2011,
2014; Bojanowski et al., 2016 ; Li et al. 2015a, b; Nasci-
mento et al. 2019; Golubtsov et al., 2019) and remain open
to question. This is partly due to the difficulties involved
in probing the rhizosphere — the microscale environment
immediately surrounding root tissue, and also due to the
numerous factors which can affect rhizoliths formation.
Such factors include, for example, the nature of the cement-
ing mineral, soil humidity and microbial activity (McLaren
1995), root exudation of organic acids (Albalasmeh and
Ghezzehei 2014; Marschner 1995), mass-flow (Cramer and
Hawkins 2009) and evaporative concentration and evapo-
transpiration (Owen et al. 2008). Moreover, other factors
like the interplay of organic matter, bio-chemicals of pro-
duction and/or decomposition of living and/or deceased
organic tissues, mineral weathering, mineral-water-root
interfaces, redox conditions, microorganism, gas exchange,
pH, as well as soil physical properties can also affect rhizo-
lith formation (Zhao et al. 2020; Dontsova et al. 2020; Liang
et al. 2018; Dwivedi et al., 2017; Spohn et al. 2013; Sanaul-
lah et al. 2011; Jones et al. 2009; Smits et al. 2005; Rasse
et al. 2005; Hinsinger et al. 2003; Der Hoven and Quade
2002; Van Breemen et al. 1983). It is therefore challenging
to determine the formation mechanisms of rhizoliths, which
form in different sedimentary and diagenetic environments
(Sun et al. 2019b).
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Rhizoliths in the deserts of northwest China have been
widely studied (Li et al. 2015a, b, 2017; Sun et al. 2019a, b)
and have been observed either at the soil surface or sub-sur-
face. The surficial rhizoliths are most commonly eroded out
of dune soil and weathered at the soil surface, where they
are subjected to late or epi-diagenesis like wind erosion,
dissolution, radiation, and physical thermal expansion and
cold contraction. This results in the fragmentation of rhizo-
liths at the soil surface (Li et al. 2015a, b, 2017; Yang 2000;
Chen et al. 2004; Gao et al. 1993), modifying the original
characteristics of the rhizoliths associated with their forma-
tion underground. Here, we term “in-situ rhizoliths (IR)”
the rhizoliths preserved vertically and deeply underground
and which were not subject to any weathering and epidiage-
netic process, in contrast with the reworked and weathered
rhizoliths (EWR). To date, pristine rhizoliths from deserts
have only been investigated at one site (Tengeri Desert,
NW China) (Sun et al. 2020), where they were observed to
be preserved horizontally within shallow subsurface dune
soils. The pristine rhizoliths from the Badain Jaran deserts
differ from those of the Tengeri Desert, as they are posi-
tioned vertically within the deep Holocene soils stratigraphy
(Fig. la, b). These two types of pristine rhizoliths — hori-
zontal- or vertical- — might have different mechanisms of
formation, potentially related to contrasting environmental
settings. In the present study, the pristine rhizoliths from the
Badain Jaran Desert were characterized using field obser-
vations as well as microscopic and isotopic techniques to
elucidate their formation mechanisms.

2 Geographical setting

The Badain Jaran desert, at an altitude of 1,200-1,700 m
a.s.l., is characterized by the co-existence of mega-dunes
and lakes (Ma and Edmunds 2006; Yang et al. 2011; Jiao et
al. 2015; Shao et al. 2015; Zhang et al. 2017). The heights
of the mega-dunes are usually 200-300 m and can reach
over 500 m in its southeastern part (Dong et al., 2013). The
annual precipitation is 40—120 mm and mainly occurs in
summer. The annual potential evaporation is over 2500 mm
with mean annual air temperatures from 9.8 to 10.2 °C. The
mean annual surface wind speeds range from 2.8 to 4.6
m-s~', and the dominant wind directions are northwest and
west (Dong et al. 2004; Zhang et al. 2017). The precipita-
tions which are <5 mm account for approximately 90% of
all rain/snow events in the desert and evaporate from the
mega-dune surface in 1-3 days (data from the recent fifty
years; Ma et al. 2014 and 2017). Our investigations over
the last years showed that the vegetation in the southeast-
ern margin of the desert is mainly constituted of Artemisia,
Psammochloa, and Phragmites species. They are mainly
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Fig. 1 Locations of the study area and the sampling site

a: Location of the Badain Jaran Desert, northwestern China

b: Location of sampling site of rhizoliths in the southeastern margin of
the Badain Jaran Desert

present in the lowermost portions of the landscapes, i.e.
swales and depressions between the dunes in the deserts of
NW China.

The dune soils contain primary and secondary rock and
mineral debris from outside of the deserts and the local
weathered bedrocks by wind transportation and mixture,
and the average carbonate content of the soils is 6.47 %
(Sun et al. 2019a). Previous works also confirmed that car-
bonate minerals are present in low amounts in the silicate
desert sands based on XRD analysis (Gates et al. 2008; Bai
2011). The calcium carbonate content is between 0.5 % and
2.5 % by weight in the dune sands of the Badain Jaran Des-
ert (Li and Yang 2004). The average carbonate content of
the Badain Jaran desert is 4.64% (Wang et al. 2004), while it
can be as high as 23% in the calcareous layers in these des-
erts (Yang et al. 2003). It is sufficiently large to impact the
radiocarbon ages of dune sediment (Yang et al. 2010) and
rhizolith carbonate cement. Soil carbonates formed through
cycling generations with a mixture of lithogenic and pedo-
genic pre-carbonate, as well as new-formed carbonate from
weathered silicates (Monger 2014; Monger et al. 2015).

3 Materials and methods

In the vast area of the Badain Jaran desert, EWR are com-
monly scattered due to erosion and weathering on dune soil
surfaces. In contrast, IRs were only found at one place in
the southeastern peripheral margin of the desert. Therefore,
rhizoliths were investigated and collected from five sites in
an area of the margin (Fig. 2a, ~39°28'N, ~102°26'E). EWR
occurred in the swales between small dunes (Fig. 2b). A pit
of about 50 cm depth was carefully excavated around IR
(Fig. 3a) until it was entirely exposed (Fig. 3b, ¢, d). The
petrographic and mineralogic analyses of one IR specimen
were carried out in the laboratory of the Northwest Petro-
leum Institute, Lanzhou, China. The specimens were first
impregnated with resin, cut into transverse sections, and
polished to 4.8 cm X 2.8 cm slices. A Zeiss Scope A1 micro-
scope was used to examine the mineral crystal morphology
under transmitted plain light. The technique of Dickson
(1966) was applied to stain the calcareous cement of the rhi-
zoliths, with alizarin red-S allowing to discriminate between
calcite and dolomite, and then a mixture of potassium fer-
ricyanide and alizarin red-S indicating the presence of fer-
roan or non-ferroan calcite and/or ferroan dolomite. The
luminescence pattern of the grains and cement forming the
studied rhizoliths was investigated by cathodoluminescence
(CL) with a CITL CL8200 MKS5 instrument. A fragment of
IR rhizolith was gold coated, and then analyzed using an
FEI Quanta 450 scanning electron microscope (SEM) cou-
pled with an energy dispersive X-ray spectrometer (EDX)
to examine the ultra-microscale features and the chemical
composition of the cement.

The radiocarbon dating and isotope analyses were per-
formed at the Guangzhou Institute of Geochemistry, Chi-
nese Academy of Sciences. The EWR tubes with root
hairs (Fig. 3e), the IRs with root relicts, and the root hairs
(Fig. 3e) were radiocarbon dated. They were treated using
the standard acid-alkali-acid method (Shen et al. 2010).
The samples were firstly smashed into small pieces, and
then cleaned and washed with ultrapure water (MilliQ,
Millipore) in an ultrasonic bath before being treated with
phosphoric acid (~100%). The CO, gas resulting from this
treatment was purified in a vacuum line and finally sealed
into a reaction tube for graphitization (Xu et al. 2007). The
graphite was measured with a 0.5 MeV compact accelera-
tor mass spectrometry (National Electrostatics Corporation,
0.5MV 1.5SDH-1 AMS). The precision of the measure-
ment is close to 2%o. The data were corrected for isotopic
fractionation using online AMS 8'*C values. All the radio-
carbon ages were calibrated into cal BP using Intcal20.!4C
(Reimer et al. 2020) (Table 1). Root samples and other parts
of fresh plant tissue were treated in the traditional way (acid-
alkali-acid treatment). Samples were dried in a freeze dryer.
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Fig. 2 Geomorphology of sampling sites of the studied rhizoliths

a: General view of the studied area and sampling sites (red dots) of
the EWRs that occur in swales and depressions between dune chains.
Artemisia shrubs are sparsely scattered in the swales and depressions
(fine black dots)

b: Whitish broken rhizotubes of scattered EWRs look like frost or
snow from far away. The black dots on the slope of dunes in the far
distance are Psammochloa herbs

Subsamples were split up into quartz tubes in the presence
of copper oxide and silver wire. The quartz tubes were
pumped to 1.0x 1072 torr in a vacuum line and then sealed
using a torch. The sealed tubes were placed into an oven
at 900 °C for organic carbon oxidation. The 5'3C and 5'30
values of the carbonate cement of five rhizoliths and three
Artemisia plant specimens were also determined separately
using an isotope ratio mass spectrometer (Thermo Finigan
Delta Plus XL; Table 2).

Soil paleotemperatures derived from rhizolith carbonates
were calculated using the following equation developed by
Dworkin et al. (2005) based on the database of the Holocene
carbonates (Cerling and Quade 1993):

30 = 0.49 X MAAT - 12.65

where 3'%0 and MAAT represent the oxygen isotopic
composition of the carbonate (%o), Pee Dee Belemnite
(PDB) and the mean annual air temperature (°C), respec-
tively. This equation is suitable for carbonates with 5'%0
values comprised between —13%o and —1%o (PDB). The val-
ues outside this range reflect post-formation processes (e.g.
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diagenesis, recrystallization) or evaporative enrichment
(Dworkin et al. 2005).

4 Results
4.1 Field observations on rhizoliths and host soils

The eroded and weathered rhizoliths (EWRs) were found in
the swales and depressions between dune chains (Fig. 2a).
The whitish broken rhizotubes (Fig. 3a) were exhumed by
wind erosion and looked like frost or snow from distance
(Fig. 2b). Psammochloa herbs (Fig. 2a) and Artemisia spp.
shrubs (Fig. 3a) occurred sparsely in the swales and depres-
sions (Fig. 2a).

Only the vertical rhizoliths preserved in sand soil were
expected to be pristine, in-situ rhizoliths (IR). Only five IRs
were found in an area of about 20X 20 m? in a swale where
EWRs were also present (Fig. 3a). One vertical rhizolith
was extracted for detailed examination in the present study.
Wind striations were visible across the pit wall (Fig. 3b) and
on the rhizoliths (Fig. 3c). The soil was dry at the surface
(Fig. 3a, b, ¢) and moist below 10-15 cm depth (Fig. 3b) and
can be classified as Leptic Regosols (FAO, 2014).

The underground part of the IR was much thicker and
more fragile than the aboveground part (Fig. 3c). The cen-
tral part of the IR corresponds to a hollow channel filled
with root residuals and sand (Fig. 3d). The halo around this
central part is whitish to yellow-brown and becomes grey-
beige with distance from the center (Fig. 3d).

The EWRs appeared as small whitish broken tubes
densely and randomly scattered at the soil surface (Fig. 3a).
Hair-like root relicts were found within one EWR (Fig. 3e).
The hollow channel of the EWR was also made of brown
root remains mixed with sand (Fig. 3f).

4.2 Petrography

Microscopically, the IR consists of poorly cemented grains,
mainly of quartz, but also feldspars, and carbonates that
are stained brownish-red with Alizarin red-S (Fig. 4a).
The lithogenic carbonates or primary carbonates particles
originate from windblown materials from around the desert
bedrocks (Sun et al. 2019a) and appear as patches or lumps
(Fig. 4a). The grains are entrapped by micritic calcareous
cement with no sign of post-diagenetic alteration (Fig. 4a).

Cathodoluminescence analyses (Fig. 4b) confirmed the
nature of the clastic grains of the rhizoliths, with quartz
grains in dark brown-blue (Mavris et al. 2012; Omer 2015),
feldspars in blue (alkali feldspar) or green (plagioclase)
(Scholonek and Augustsson 2016), and lithogenic carbon-
ates in orange (Omer et al. 2014; Kolchugin et al. 2016).
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Fig. 3 Field characteristics of the rhizoliths

a: White weathered and broken rhizoliths are horizontally scattered on the soil surface. A few vertically standing rhizoliths can also be observed.
The small shrubs in the left upper corner are Artemisia spp. (the black camera bag is 8§ cmx12 cm)

b: In-situ rhizoliths found in a ca. 50 cm-deep pit. The dune soil is wet at depth and the sand-stratification was clear

¢: The underground part of the rhizoliths (of Fig. 3b) is much thicker than the eroded and weathered part. The rhizolith shows clear sand-stratification
d: Root relicts inside the central hollow and a white halo within the IR (of Fig. 3¢) after having been broken. The relicts were radiocarbon dated
e: Root hair relicts and rhizoliths. The relicts were pulled out of the EWR and were radiocarbon dated (the coin diameter is 20 mm)

f: Brown root remains were mixed with soil within an EWR (the coin diameter is 20 mm)

The carbonate cement is recognizable as bright orange dots 4.3 Radiocarbon ages

scattered among clastic grains (Fig. 4b). The cement con-

sists of low magnesium calcite (Fig. 4c, d). The results of radiocarbon dating of the IR (Fig. 3d) and
EWR (Fig. 3e) specimens are shown in Table 1. The age of
the organic relicts in the central hollow channel of the IR is
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Table 1 AMS radiocarbon ages of rhizoliths in the Badain Jaran Desert

Sample Position Material AMS 3'3C  FlC +lo Age +lc AYC +l1c Age +lo
(Lab) No./ (** C yr BP) (Cal BP)
rhizolith type

8453/IR G-2 carbonate cement  -2.1 0.3754  0.0014 7870 35 627.6 1.4 8628 32
8457/IR G-2 root relicts -17 0.7708  0.0020 2090 25 2354 2.0 2053 16
8454/EWR E carbonate cement 2.0 0.5714  0.0013 4495 20 4332 1.3 5232 19
8458/EWR E root relicts -24 1.0444  0.0017 -345 15 360 1.7 2009 CE

Note: BP: Before present, defined as before 1950; F'“C: Fraction of modern carbon; Cal: Calibrated using CALIB7.1
for BP and CALIBomb for C.E. age; IR: in-situ rhizoliths; EWR: Eroded out and weathered rhizoliths; CE: common era

2053 + 16 years cal BP. The root hair relicts within the EWR
are modern in age (2009 C.E.). The age of the EWR cement
is 5232+ 19 years cal BP and the IR cement is 8628 +32
years cal BP.

4.4 Stable carbon and oxygen isotopes

The 8'3C and 8'%0 values of the carbonate cement and the
carbonate particles of rhizoliths and Artemisia spp. tissues
were shown in Table 2. The mean 5'°C (VPDB) and 3'%0
(VPDB) values of the EWR cement are —2.6%o and —6.8%o,
respectively. Similar values were observed for the IR
cement, with §'°C and §'0 values of —2.5%o and —6.2%o.
Artemisia tissues are characterized by 8'°C and §'%0 values
0f-26.7%o to -28.5%o and —27.4%o to -32.1%., respectively.

5 Discussion

5.1 Ages of rhizoliths, stable isotopic composition
and environmental implications

Modern analogs of initial biomineralization around plant
roots are rare (Alonso-Zarza 2018). However, some root
relicts were radiocarbon dated to Holocene in modern
loess (Gocke et al. 2011), aeolian sand dunes (Cramer and
Hawkins 2009), coastal/inland sands (Joseph & Thrivi-
kramaji, 2005), and bay dunes (Rao and Thamban 1997).
Apparent carbonate radiocarbon ages (Table 1) indicate that

the rhizolith formation in the Badain Jaran Desert occurred
during the Holocene (8-2 ka ago).

The 3'3C values of the Artemisia tissues (—26.74%o to
—28%o, Table 2) confirm the C; nature of Artemisia (Liu
et al. 2017) because the C; photosynthesis pathway occurs
in most shrubs, herbs, and (cool-season) grasses with §'°C
values ranging between ~—25%o and ~—32%. (Vogel 1993;
Basum et al. 2015), with a mean value of —27%o (Smith
and White 2004; Basum et al. 2015). Generally, C; plants in
arid environments present slightly higher 3'3C values than
those from temperate regions (Cerling and Quade 1993;
Zamanian et al., 2021). When the fluxes of CO, derived
from organic matter decomposition in soils are higher than
the rates of pedogenic carbonate formation, the 8'°C values
of secondary carbonates are mainly controlled by those of
soil CO, and they can be used as an indicator of the local
vegetation cover (Cerling 1984; Cerling and Quade 1993;
Quade 2014), after adjustment for isotopic fractionation
and diffusion. Rhizoliths form in isotopic equilibrium
with root-derived C (Gocke et al. 2011) and their 5'°C val-
ues are generally enriched by about 14%o to 16%o related
to the root-derived C (Cerling 1984; Cerling and Quade
1993; Zamanian et al. 2016a). In the present study, the dif-
ference between the 8'°C values of Artemisia tissues (ca.
—27%0) and rhizoliths (about —2%o to —3%o) (Table 2) is
much larger than 14—16 %o.. Logically and theoretically,
there are three possible explanations for this difference: (1)
rhizoliths originate from other plant species than Artemisia,
with a C, metabolic pathway; (2) rhizoliths were subjected

Table 2 §'3C and 3'%0 stable isotope values of thizoliths cement and Artemisia tissues in the Badain Jaran Desert

Rhizolith/Root Type Sample No Position ~ Material 313Cy_ppg (%o0) 3'30y_ppp (%0) Paleotemperature(°C)
EWR (cement) DM-A A Carbonate  -2.42 -7.22 10.92
DM-B B Carbonate -3.02 -7.24 10.70
DM-E E Carbonate -2.43 -5.96 13.46
average -2.62 -6.81 11.75
IR (cement) DM-G-1 G Carbonate -2.53 -6.90 11.57
DM-G-2 G Carbonate -2.44 -5.58 14.22
average -2.49 -6.24 12.89
Artemisia tissues  Dead root A-1 A Carbon -26.74 -27.38
Fresh stem A-2 A Carbon -28.47 -28.70
Fresh seedling  A-3 A Carbon -28.30 -32.05

Note: V-PDB: Vienna-Pee Dee Belemnite

@ Springer



Acta Geochim (2022) 41(5):811-822

817

Fig.4 Microscopic features of the studied rhizoliths

1.00 2.00 3.00 4.00 5.‘!0 6.00 7.00 8.00 9.00
Energy - keV

a: Clastic particles and stained cement of an IR under microscope. Most of the particles are quartz (white), but a small amount of feldspar (gray)
and carbonate rock fragments are also present. Two carbonate particles (marked by red lines) were stained in brown/red. The image was taken
under plane-polarized light;

b: Round clastic particles surrounded by cement viewed by cathodoluminescence. The light blue and green grains are feldspars; the deep dark
grains are quartz. The small red-orange dots are carbonate cement. The other parts showing no luminescence correspond to carbonate cement
covered by clay minerals. The dark color of cement can also be due to the addition of Fe?* and Mn?* cations during rhizolith formation in a weak
redox environment. In the upper-left corner of the picture, the dotted orange loop-like halos may be calcite derived from the weathered feldspar

grains (plane-polarized light);
C: Crystalline structure of rhizoliths calcite cement under SEM;

D: EDX spectroscopy of the marked area in Fig. 4c shows that the mineralogy of rhizolith cement is calcite or low Mg calcite.

to diagenetic processes, such as wind erosion, dissolution,
radiation, physical thermal expansion, and cold contrac-
tion on the soil surface; (3) there was a large contribution
of lithogenic carbonates due to relatively fast formation of
rhizoliths in the Badain Jaran desert.

The first hypothesis can be rejected, as field observations
clearly showed the close association between rhizoliths and
Artemisia plants (Figs. 2a and 3a). Similarly, the second one
can be excluded, as microscopic analyses revealed no dia-
genetic changes in the rhizoliths carbonates (Fig. 4a, b, c).
Therefore, the third hypothesis is the most likely and is also
supported by a large age discrepancy between root remains

and the rhizolith cement (Table 1). A mixture of secondary/
pedogenic and lithogenic carbonates in rhizolith cement and
also diffusion of atmospheric CO, in soils with low rates of
respiration can lead to enrichment in 8'°C values. Amund-
son et al. (1989) found that a low density of vegetation
cover was the main reason for the entrance of atmospheric
CO, (with §'*C values ~ -6.5%o for pre-industrial CO,) into
soils and enrichment of 8'°C values in the pedogenic car-
bonates of the Mojave Desert, California. The enrichment
of 8'3C values of secondary carbonates was also observed
in the deserts of central Iran, which was related to a decline
in the vegetation cover and influx of atmospheric CO, over
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time (Bayat et al. 2018). Therefore, the lithogenic carbonate
residues inside the rhizoliths of the desert can explain the
enrichment of 3'3C values. Furthermore, sparse vegetation
density in the Badain Jaran desert (Dong et al. 2004; Zhang
et al. 2017), low respiration rates, and a sandy texture of the
soil (Figs. 2b and 3b) lead to infiltration of atmospheric CO,
and can further enhance this enrichment.

The 5'%0 value of secondary carbonates was shown to
be related to the 5'0 value of local meteoric water which
is controlled by air temperature and evaporative condi-
tions (Cerling 1984; Cerling and Quade 1993; Quade
2014; Zamanian et al., 2021). As 14 c dating of carbonates
shows that rhizoliths were formed during the Holocene
(Table 1), we applied an empirical model for paleotempera-
ture reconstruction based on Holocene carbonates (Dworkin
et al. 2005). The reconstructed temperatures from rhizoliths
of the Badain Jaran desert (Table 2) are ca. 2 to 3 °C higher
than the mean annual temperature recorded in the region
(Dong et al. 2004; Zhang et al. 2017). However, the ana-
lyzed rhizoliths consist of a large contribution (more than
90%) of lithogenic carbonates from our pre-studies (Sun et
al. 2019a) that challenges the reliability of any paleo-envi-
ronmental reconstructions based on rhizoliths for Badain
Jaran desert, even though the determined paleo-environ-
mental information looks reasonable.

5.2 Mechanism of rhizolith formation in dune soil
of Badain Jaran desert

There are two potential sources of Ca>* for calcification of
the initial intact rhizoliths in the Badain Jaran desert: (i) dis-
solution of the lithogenic carbonates of dune clastic particles
transported by the wind; (ii) weathering of other minerals
like feldspars (e.g. plagioclases) (Fig. 4b; Gudbrandsson et
al. 2014). The release of organic acids via organisms during
root decomposition increases the dissolution rate and solu-
bility of silicate minerals like feldspars (Welch and Ullman
1996), which releases calcium cations. The mechanisms of
feldspar dissolution and weathering are subjects of discus-
sion (Yuan et al. 2019). Nevertheless, the weathering rates
of feldspars were shown to be proportional to their exposed
surface areas (Holdren and Speyer 1985) and the population
of surface complexes with H*, OH™ or ligands (Bloom and
Nater 1991).

When the root dies, it can still provide a conduit for
downward and upward percolation of solutions and air.
This leads to the dissolution of carbonates and minerals
weathering as well as carbonates re-precipitation within
or around the decaying roots, which forms a petrified root
tubule (Sarjeant 1975; Nascimento et al. 2019). Calcite can
precipitate along the root hollow channel due to the steep
chemical gradient occurring around the dead root. The
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formation of calcite in and around roots is favored by the
episodic drying phases of the soil, which often occurs in
deserts due to strong solar radiation and wind (Cohen 1982;
Kraus and Hasiotis 2006). These episodic drying events pre-
vent the complete dissolution of lithogenic carbonates, but
the entrapment in the rhizolith cement (i.e. the pedogenic
carbonate). This formation procedure points to the fact that
rhizoliths form relatively fast, over a few drying events,
and even after root death. Furthermore, the sandy structure
of the soil facilitated cementation with a relatively small
amount of precipitated pedogenic carbonates. The specific
fast formation and incomplete recrystallization of carbon-
ates (Zamanian et al. 2016b and c) in equilibrium with
respired CO, make the studied rhizoliths in Badain Jaran
Desert inappropriate for paleo-environmental reconstruc-
tions and radiocarbon dating. This is in contrast with many
recently published works that suggest the suitability of rhi-
zoliths for paleo-environmental reconstruction (Gocke et al.
2010, 2011, 2014; Bojanowski et al. 2015; Li et al. 2015a,
b; Nascimento et al. 2019).

Soil moisture is a key factor in the rhizolith formation
process. Rhizolith formation around decaying roots needs
a semi-closed, weak redox environment (Fig. 5). Indeed,
both shallow dry, and deeper waterlogged soils are not
favorable environments for root decomposition and associ-
ated CO, production, as an open and dry environment pre-
vents root decay, while closed reducing environments lead
to organics fermentation and CH, production rather than
HCO;™ (Sun et al. 2019a). The homogenous porous sandy
soil of the Badain Jaran Desert (Fig. 3a, b) and the harsh
climatic condition of the region provide a favorable condi-
tion in terms of soil moisture, i.e., episodic wetting and dry-
ing cycles. Soil moisture is further controlled by landscape
geomorphology. The desert vegetation is solely distributed
at the foot of dunes (Fig. 2a, b) on the beds of swales and
depressions, where rainwater accumulates and underground
pore water migrates from higher landscape positions. In
the depressions, the Ca>* concentration also increases (Bai
2011), which further favors rhizolith formation.

In the Badain Jaran Desert, IRs are progressively eroded
out of dune soils and become thinner due to wind and
weathering, forming the EWRs. Some features of the for-
mer roots, such as root hairs within the hollow channels
of the EWR (Fig. 3d, e), can still be preserved because of
extreme aridity at the surface and also protection offered by
the rhizolith carbonate cement. Nevertheless, fine roots are
rarely found within the EWRs, as they are, mostly, lost by
wind erosion (Fig. 5).
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Fig.5 Conceptual diagram showing formation mechanism of the IR in
dune sandy soils. After root death, rhizolith formation starts in semi-
closed redox conditions at about 30—50 cm depth below the surface. In
these conditions, water is available for chemical reactions (i.e., mineral
dissolution and carbonate crystallization) leading to root decomposi-
tion, CO, release, and mineral dissolution. At the same time, different
types of organic acids are produced, inducing a decrease in pH around
the root. A steep chemical gradient is generated between the root and
surrounding soil. Ca®* ions are released via the dissolution of minerals
such as feldspar and lithogenic carbonates. They may later crystallize
as calcite around the decomposed roots. At the same time, the channels
left after root decomposition provide a conduit for water transporta-
tion to the surface, leading then to evaporation and further carbonate
precipitation in the channel and/or around the decomposed root relicts.
The water transportation to the surface (thick yellow arrows) is due to
extreme weather conditions in deserts such as strong winds and solar
irradiation. The rhizoliths can be preserved in underground soil. Then,
wind may remove the surface soil layer and expose the rhizoliths on
the surface. The latter can become thinner and thinner by chemical
and mechanical erosion and weathering on the soil surface, and at last
broken, lying on the surface

6 Conclusions

The field observations and laboratory analyses of rhizoliths
from dune soils of Badain Jaran Desert constrain the main
factors influencing their formation:

a. Vegetation type. This is the first key factor for rhi-
zolith formation in this area as the rhizoliths are only
formed around the modern dead roots of Artemisia
rather than roots of any other species such as Psam-
mochloa villosa (Trin.) Bor, and Phragmites Australis.
b. Soil moisture. Rhizoliths are only present in moist,
deeper soil horizons of the dune swales. These sandy
soils with suitable water content provide weak oxi-
dation-reduction conditions for gas exchange as well
as water migration and evaporation leading to con-
tinuous root decomposition, solutes transport, and
calcification.

c. Topographic position. Soil pore-water migrates
from upper parts of dunes to swales and depressions,
where rainfall and dune condensation water is col-
lected. Water is permanently available for Artemisia
growth in soils of swales and depressions despite the
extreme evaporative condition of the region.

d. High aridity and evaporation potential. The high
aridity and evaporation due to strong solar radiation
and strong winds favor the condensation and crystal-
lization of dissolved carbonates around roots and the
formation of rhizoliths.

The in-situ rhizoliths are shown to be formed over a very
short time after root death, leading to the incorporation of
“old” carbon from lithogenic carbonates (as much as 90% of
rhizolith carbonates) into the rhizolith structure (Sun et al.
2019a), as evidenced by the ' C date discrepancies between
rhizolith carbonates and organic relicts of the roots. Isoto-
pic analyses also highlighted the effects of the low-density
vegetation cover and high rates of evaporation in deserts on
13 C and "0 isotopic enrichment of rhizoliths. Altogether,
these results show that rhizoliths are the reflection of the soil
complex and specific environmental and climatic conditions
in which they are formed.
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