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Abstract This paper discusses the latest research on the

accretion and differentiation of terrestrial planets and

multidisciplinary constraints on light elements in iron-

dominated metallic cores. The classic four-stage model of

terrestrial planet formation advocates slow and local

accretion. Meanwhile, the pebble accretion model suggests

fast accretion for planets, while the Grand Tack model

provides heterogeneous accretion mechanisms. Terrestrial

planets and small interstellar bodies may have experienced

at least some degree of partial melting due to the three

primary energy sources (i.e., the decay of short-lived

radioactive nuclides, the kinetic energy delivered by

impacts, and the conversion of gravitational potential

energy). Together with metal-silicate separation mecha-

nisms, the magma ocean theory depicts the pattern of core

formation in terrestrial planets. Several hypotheses have

been proposed to explain the concentration of siderophile

elements in the mantle, including the single-stage, contin-

uous, and multistage core formation models, and the late-

veneer model. Some light elements have been postulated in

the core to account for Earth’s outer core density deficit. A

plethora of constraints on the species and concentration of

light elements have been put forward from the perspectives

of cosmochemical and geochemical fingerprints, geophys-

ical observations, mineral physics, numerical modeling,

and theoretical prediction. Si and O may be the two leading

candidates for Earth’s outer core light elements; however,

it still remains an open question. S is another potential light

element in Earth’s core, most likely with less than 2 wt%.

Other light elements including H and C, may not exceed

1 wt% in the core. Moreover, the accretion and differen-

tiation history would provide some clues to light elements

in other terrestrial planetary cores. In principle, a larger

heliocentric distance corresponds to accretion from more

oxidized materials, leading to a higher S concentration in

the Martian core. On the contrary, Mercury is close to the

Sun and has accreted from more reduced materials,

resulting in more Si in the core.

keywords Terrestrial accretion � Early processes � Core-

mantle differentiation � Core composition

1 Introduction

As one of the most important events in the early history of

terrestrial planets, core formation involving a large degree

or perhaps global melting of accreted substances has been

widely concerned over the last few decades. Ringwood

(1979) proposed that Earth formed from homogeneous

materials and then went through internal differentiation

before forming the metallic core and silicate mantle. Later,

the magma ocean theory described the core formation

scenarios for terrestrial planets and asteroids following the

understanding of heating from short-lived radioactive ele-

ments (mainly 26Al) and kinetic energy from impacts

(Carlson et al. 2014). All the terrestrial planets and some

asteroids in the Solar System show differentiation of the

metallic core and silicate mantle. However, the core-

forming conditions for individual planetary bodies differ

& Jin Liu

jin.liu@hpstar.ac.cn

1 Center for High Pressure Science and Technology Advanced

Research, Beijing 100094, China

2 CAS Center for Excellence in Deep Earth Science,

Guangzhou 510640, China

123

Acta Geochim (2022) 41(4):625–649

https://doi.org/10.1007/s11631-021-00522-x



due to the variety of accretion rates, accreted materials, and

planet sizes. For instance, the ratio of a planet and its core

for Mercury is much smaller than that for Mars, mainly

reflecting the chemical difference between their precursors

during planetary accretion. Thus, the core formation event

is vitally important for the geophysical and geochemical

properties of the planets. Geochemical signatures, in turn,

help constrain the accretion and differentiation history of

planets.

Along with the core-mantle differentiation, the extent of

elements partitioned into the metallic core depends on their

siderophile nature at high pressure and temperature (P–T)

conditions. Light elements including Si, O, S, C, and H

have attracted considerable attention because of the core

density deficit between the seismic model and pure iron at

the outer core P–T conditions. The identity and abundance

of light elements in the core have been extensively assessed

in the light of geophysical observation, cosmochemical and

isotopic studies, and high P–T experiments in the last few

decades (Terasaki and Fischer 2016; Trønnes et al. 2019

and references therein). However, there are still many

uncertainties around the composition and evolution of

terrestrial planetary cores. High P–T experiments on iron-

rich alloys often lead to inconsistent results while crucial

measurements on terrestrial planets are scarce. Meanwhile,

cosmochemical and isotopic data of meteorites present

evidence of the origin and evolution history of terrestrial

planets, which in turn, help pin down the potential light

elements in iron-dominated metallic cores.

This review provides a synthesis of the current under-

standing of terrestrial planets’ accretion and core-mantle

fractionation scenes. The possible light elements in the

Earth’s core are examined in detail with constraints from

cosmochemistry and isotopic fingerprints, high P–T metal-

silicate partitioning experiments, and geophysical obser-

vations. The candidate light elements in the cores of other

planetary bodies are also discussed.

2 Core formation scenarios

2.1 Terrestrial planet formation models

2.1.1 The classical model

Planet formation may have undergone four stages: dust

sedimentation and growth, planetesimal growth, planetary

embryo growth, and planet growth (including the giant

impact) (Fig. 1). These stages likely took place simulta-

neously at different orbital radii in the solar disk, where the

temperature, density, viscosity, and orbital period changed

with the semi-major axis.

(1) Planet formation started in the nebular disk from a

collapsing molecular cloud. Pre-existing dust would

condensate from gas settling towards the mid-plane

of the protoplanetary disk (Weidenschilling 1980). A

balance could be realized between the turbulent

diffusion of solid material and gravity, and a vertical

equilibrium structure was assembled in the disk

(Cuzzi et al. 1993; Dubrulle et al. 1995). Dust grains

could grow via collisions in this structure. Detailed

mechanisms for the accreting period can be found in

Dominik et al. (2007) and Morbidelli and Raymond

(2016).

(2) There are the ‘radial drift’ and ‘bouncing’ barriers

during the accretion of planetesimals from dusts. A

headwind causes the radial drift barrier at the

boulders of Keplerian speeds, leading to energy loss

and a spiral of orbits into the Sun (Whipple 1972).

The bouncing barrier is the reducing efficiency of

binary collisions due to colliding boulders bouncing

or even fragmenting (Blum and Wurm 2008; Zsom

et al. 2010). It is possible to grow large planetesimals

via binary collisions if ice enhances stickiness and

collision velocities remain below * 50 m/s (Wada

et al. 2009, 2013; Okuzumi et al. 2012). However,

little is known about whether the formation of

terrestrial planets in the Solar System could satisfy

such strict conditions. In the following sections, the

pebble model provides a more robust mechanism for

forming planetesimals and embryos from nebular

dusts.

(3) Once objects grew beyond the boulder barrier of

planetesimals, the growth rate would depend on their

sizes. Small planetesimals accreted slowly and alone

in their physical cross-section. If planetesimals grew

large enough, the escape velocities from their

surfaces were greater than their relative velocities,

and then gravitational focusing became important

(Greenberg et al. 1978). The dynamical friction

reduced the relative velocities of larger bodies

compared to the rest. The larger bodies had wider

collision cross-sections and hence grew faster into

planetary embryos. Once the eccentricities reached

orbit-crossing values, the planetesimals eventually

collided. In other words, planetesimal growth

changed into the ‘runaway’ process (Wetherill and

Stewart 1989; Kokubo and Ida 1996). The dynamical

fraction reduced the eccentricities and inclinations of

larger bodies, while small bodies tended to fragment

during a collision due to their higher relative

velocities and lower gravitational binding energies.

The runaway growth produced a bimodal mass

distribution among the aggregation of planetesimals

and planetary embryos. The growth of planetary
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embryos would be self-limiting, and the runaway

formation slowed down due to viscous stirring

(Lissauer 1987; Ida and Makino 1993). The growth

changed into the ‘oligarchic’ stage, wherein the

bimodal mass distribution remained. Approximately

half of the solid mass was in the embryos, while the

other half was in planetesimals in the accretion disk.

Orbital repulsion caused planetary embryos to part

from each other at about 10 mutual Hill radii

(Kokubo and Ida 1995).

(4) The oligarchic growth ended once the dynamical

friction could not maintain the orbits of planetary

embryos. It occurred when the number of planetes-

imals was substantially depleted. If the gas drag,

instead of planetesimals, was the main source of

dissipation, then removing nebular gas resulted in

the termination of the oligarchic growth (Iwasaki

et al. 2002; Zhou et al. 2007). Once the gravitational

stirring between large bodies overcame the dissipa-

tion force from gas disk and/or planetesimals,

planetary embryos perturbed each other onto cross-

ing orbits, resulting in giant impacts or scattering

events (Wetherill 1985). In the following impact

events over tens of millions of years, the embryos

had stable orbits, and the planets finally formed.

2.1.2 The fast accretion and the pebble model

The accretion scenarios of dust growth, runaway growth,

and oligarchic growth were too slow compared with

removing nebular gas and forming Mars (a planetary

embryo) (Levison et al. 2010). Besides, it is hard to explain

the 10–100 km-sized objects in the asteroid belt based on

the bimodal accretion in the classical model. In the past

decade, the pebble (millimeter to decimeter) accretion was

proposed to form large planetesimals and planetary

embryos directly from dusts. Notably, the Roche density, at

which point the particles would no longer be pulled apart

by the gravity of the Sun, was hard to surpass for small

particles due to the sediment turbulence (Weidenschilling

1995). Youdin and Goodman (2005) provided the

‘streaming instability’ process to robustly concentrate

pebbles beyond the Roche density. In this process, the

Fig. 1 Terrestrial planet formation stages and timescale. The upper panel is the illustration of terrestrial planets. The four stages are divided as

follows: (I) dust settling, (II) planetesimal formation, (III) planetary embryo formation, and (IV) Giant impacts including the Moon-forming

event. The formation scene corresponds to a two-stage accretion scenario (Yu and Jacobsen 2011). The shaded area represents the protoplanetary

nebula in the Solar System before its extinction at * 4 Ma (Bollard et al. 2017). The lower panel shows the accretion time. The formation of

CAIs constrains the start point. The bottom of the arrow is constrained by the core formation for terrestrial planets, while the tip of the arrow

indicates the crust formation or the end of accretion. The datasets of the accretion timescale are compiled from previous studies (McCubbin and

Barnes 2019; Lammer et al. 2020a; Mezger et al. 2020)
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pebbles formed clumps. Since pebbles moved faster than

clumps, the clumps continued growing up until a point at

which they gravitationally collapsed and formed planetes-

imals. However, it is debated whether planetesimals could

form generically in a nebular disk (Hughes and Armitage

2012; Krijt et al. 2016).

Other pioneering work suggested that pebbles might be

captured in small, turbulent eddies if the disk was turbulent

(Cuzzi et al. 2008). The eddies pushed particles to the outer

edges and condensed particles to exceed the Roche density.

A local high-pressure area in the disk, either caused by a

zonal flow (Johansen et al. 2009; Simon and Armitage

2014) or viscosity change within the disk (Kretke and Lin

2007; Lyra et al. 2008), could result in the formation of

pebbles. The inward movement of icy pebbles at the snow

line caused a pile-up of silicate grains, which could also

lead to the formation of planetesimals (Ida and Lin 2008;

Ida et al. 2016).

At the later accretion stage of planetesimals, they were

likely embedded within a sea of pebbles. The pebbles

would continue moving inwards because of the pressure

gradient in the disk. Once the pebbles passed planetesi-

mals, they would be accreted efficiently by the latter since

the capture cross-sections of pebbles were very large

(Johansen and Lacerda 2010; Ormel and Klahr 2010).

Similar conditions are also applicable to the accretion of

planetary embryos. Pebble accretion was extremely rapid

and essential to interpret the formation of planets (Lam-

brechts and Johansen 2012), explaining the rapid accretion

of giant planets before the removal of gas in the disk. It

also improves our understanding of the accretion of ter-

restrial planets. To date, the pebble accretion theory is still

too young, and some details are still unclear. It requires

more study to clarify the early accretion of planetesimals

and embryos in the future.

2.1.3 The Grand Tack model

Classical models have been proposed to simulate the later

formation stages of terrestrial planets. They set the outer

boundary of the terrestrial disk by Jupiter, given that it is

mainly unstable orbiting outside the inner 3:2 mean-motion

resonance with Jupiter (Walsh and Levison 2016). How-

ever, these classical models, including (1) eccentric Jupiter

and Saturn at current orbits, (2) extra-eccentric Jupiter and

Saturn, and (3) circular Jupiter and Saturn pre-Nice 2.0

model, all failed to predict a small planet forming near 1.5

AU (referred to as Mars). A narrow over-packed disk with

the outer border truncated at 1 AU ideally generated the

small mass of Mars, but how to generate such a truncated

protoplanetary disk is still unknown (Hansen 2009).

Walsh et al. (2011) came up with the Grand Tack model

to solve the small Mars problem (Fig. 2). In the Grant Tack

model, giant planets had a relatively short accretion time-

scale than terrestrial planets. As a result, Jupiter could

carve an annular gap in the nebular disk and be pushed to

migrate toward the Sun due to the imbalanced torques

acting on the planet from the protoplanetary disk (Lin and

Papaloizou 1986). Saturn also captured its gaseous envel-

ope, although more slowly than Jupiter. Thus, Saturn

would migrate very close to Jupiter, reaching an exterior

2:3 mean motion resonance with Jupiter (Masset and

Snellgrove 2001). The particular configuration of the

orbital spacing and mass ratio between Jupiter and Saturn

reversed the total torque on the giant planets by proto-

planetary gas, leading to the reverse of migration outwards.

The inward-then-outward migration of giant planets

provides a viable mechanism to form a truncated disk for

terrestrial planets. If Jupiter reversed its migration at 1.5

AU, the disk for terrestrial planets would truncate at 1 AU

(Walsh et al. 2011). Almost all the protoplanets and plan-

etesimals that originally formed beyond 1 AU were scat-

tered outwards by Jupiter. This tack migration would lead

to the high mass ratio between Earth and Mars, and the low

amount of mass in the asteroid belt area. The Grand Tack

model can further account for the semi-major axis

Fig. 2 An illustration of the Grand Tack model (Walsh et al. 2011).

The filled black circles indicate Jupiter, Saturn, Uranus, and Neptune.

The open black circles represent the planetary embryos (not in scale

relative to the giant planets). The red, light blue, and dark blue dots

represent volatile-poor planetesimals initially located between 0.3 and

3 AU, volatile-rich planetesimals between giant planets, and volatile-

rich planetesimals initially located between 8 and 13 AU, respec-

tively. For all planetesimals, the filled dots denote that they are inside

the main asteroid belt, while the open dots are outside. The terrestrial

planet pattern has been successfully simulated with the Grand Tack

model. Copyright Walsh et al. (2011)
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distribution of the terrestrial planets and the stirred

demography of the asteroid belt (DeMeo and Carry 2014;

Brasser et al. 2018).

In classical models, terrestrial planets mainly accreted

locally. However, in the Grand Tack model, accretion was

restricted to an annulus between * 0.5 and 1 AU, where

materials from the outer part of the protoplanetary disk

were also included. A total of 1–3 % mass for terrestrial

planets were accreted from the outer planetesimals. The

heterogeneous accretion materials may explain the simi-

larity of the D/H ratio between carbonaceous chondrites

and Earth’s water (Walsh et al. 2011). The formation scene

differs from previous classical models since Jupiter

migrated across the asteroid belt twice in the Grand Tack

model. The inward scattering of materials generated the

asteroid belt during the outward migration of giant planets.

Thus, materials in the asteroid belt came both the outer and

inner Solar System, corresponding to the C type and S type

asteroids.

2.2 Magma ocean theory and core formation

The magma ocean concept was raised after the petrological

discovery from the Apollo program (Wood et al. 1970;

Taylor and Jakeš 1974). Findings included the existence of

a global, almost monomineralic anorthositic crust and the

depletion of the mantle source of some mare basalts in Eu

which is enriched in the lunar crust. Nowadays, the magma

ocean theory has been adopted for terrestrial planets and

asteroids.

2.2.1 Heat sources for magma ocean

The redistribution of silicate and metal from undifferenti-

ated chondrites, known as the core formation process,

needs deformation and fluxion. Since neither silicate nor

metal is deformable at low temperatures, an elevated

temperature is definitely needed. The heat mainly comes

from the three sources as follows.

The first is the decay of short-lived radioisotopes. 26Al is

the most important short-lived radioisotope in the early

Solar System because of its relatively high abundance and

a short half-life of * 0.7 Ma (Gray and Compston 1974).
60Fe with a half-life of * 2.6 Ma is the secondary

radioisotope due to its relatively lower concentration (Tang

and Dauphas 2012). The heat conduction timescale for a

silicate sphere is quadratically proportional to the radius.

Therefore, an asteroid with a diameter greater than 30 km

accreted within the first million years could have be heated

by 26Al. However, due to the short half-life of 26Al, only

planetesimals or embryos that accreted within * 2 Ma

after the first solids in the Solar System, could be molten in

this way (Elkins-Tanton 2012).

The second heat source is the energy release of impac-

tors. The kinetic energy of impact was largely converted

into heat, while the depth of heating depended on the

impactor size. If all the gravitational potential energy were

converted to heat, the global temperature increment (DT)

was given by DT & 35,000 K (M/ME)2/3, where M and ME

are the mass of impactor and Earth, respectively (Rubie

et al. 2015). Such a function is oversimplified; neverthe-

less, it provides a rough estimate that a Mars-sized (& 0.1

ME) impactor would wholly melt the proto-Earth (DT &
7500 K). On the other hand, Canup (2008) suggested that

a Moon-forming impact might have melted Earth to a depth

of 2000 km. Tonks and Melosh (1993) argued that global

melting would require a projectile to be at least 40% the

mass of the Earth.

The third heat source is the release of gravitational

potential energy during iron sinking towards the metallic

core (Nimmo and Kleine 2015). This heat source was rel-

atively weak but deposited locally, which would reduce

local viscosities (Ricard et al. 2009; Šrámek et al. 2010).

Based on Canup (2008) and references therein, the DT for

terrestrial planets would be 103–104 K if all accretionary

energy was instantaneously applied to the whole planet.

Therefore, the sources above nearly comprised the total

heating budget during planetary accretion and differentia-

tion. Notably, the heat was not delivered to planets all at

once or homogeneously. As a matter of fact, the discrete

intervals of heat added to the growing planets could result

in multistage melting and metal-silicate segregations over

their accretion timescale from planetesimals to planetary

embryos and then to planets.

2.2.2 Core segregation mechanisms

Terrestrial core formation involved iron-rich metal segre-

gating from the mantle. If the bulk silicate Earth (BSE) was

not globally molten, liquid iron could travel through the

solid mantle via grain-scale percolation, the descent of

kilometer-size diapirs, and/or fracture in the solid mantle

(Fig. 3). On the other hand, if the temperatures were high

enough to melt silicates entirely, a global-scale magma

ocean would form, and iron liquid could descend efficiently

and rapidly to the core (Stevenson and Scott 1991; Rubie

et al. 2003). Furthermore, chemical equilibrium between

the silicate mantle and metallic core could occur during

core-mantle separation. However, due to the slow diffusion

rates in crystalline silicates and the large scales of metals

and silicates, the diapir and fracture mechanisms are inef-

ficient to reach chemical equilibration (Rubie et al.

2011, 2015). Here, we discuss the chemical equilibration in

the grain-scale percolation and global magma oceans

through giant impacts.
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(1) Grain-scale percolation The dihedral angle is the

key for percolation between two solid–liquid bound-

aries where they intersect a solid–solid boundary at a

triple junction (Stevenson and Scott 1991; Rubie and

Jacobson 2016). When the dihedral angle is less than

60�, liquid metal could be fully connected along

grain boundaries and percolate efficiently through

solid silicate matrices. Once the dihedral angle is

higher than 60�, a small fraction of liquid metal

would form isolated pockets. They would be

connected when the metal fraction reaches a critical

value of 2–6% for the dihedral angle range of 60�–

85� (Walte et al. 2007). Experiments revealed that

dihedral angles significantly exceeded 60� up to 25

GPa and were barely affected by pressure, temper-

ature, and the species of solid phases (Rubie and

Jacobson 2016). Notably, dihedral angles decreased

with increasing concentrations of light elements,

except Si and C (Terasaki et al. 2005). Other studies

pointed out that dihedral angles decreased to 51� at

47 GPa and 23� at 64 GPa at 3000 K, but their

experiments were likely subjected to high differen-

tial stress (Takafuji et al. 2004; Shi et al. 2013). Thus

far, the efficiency and degree of chemical equilibra-

tion between silicate and core via percolation have

never been modeled quantitatively.

(2) Global magma ocean The Moon-forming giant

impacts involved collisions of planetary embryos

with the proto-Earth. Such impacts produced sub-

stantial heat to melt the whole mantle to generate

global magma oceans (Tonks and Melosh 1993;

Rubie et al. 2015). The mantle-core segregation

process was rapid and efficient in those scenes

because of the conspicuous density contrast and very

low viscosity of ultramafic silicate liquids under high

pressure (Liebske et al. 2005). Most impactors likely

underwent differentiation with a metallic core before

reaching Earth. In some cases, the metallic cores of

the impactors could remain intact and merge directly

with the Earth’s proto-core. However, impactors

would often be emulsified partially or entirely into

small droplets in magma oceans (Rubie et al. 2003).

The metal-silicate interfacial energy controlled

droplet size, and the stable droplet was typi-

cally * 1 cm in diameter with a settling velocity

of * 0.5 m/s. Chemical equilibrium between the

core and mantle would be very limited in the former

but complete in the latter, respectively (Rubie et al.

2003).

2.2.3 Earth’s core formation models

(1) Single-stage core formation. At the outset, metal-

silicate segregation and core formation were thought

to take place at a single set of P–T-fO2 conditions (Li

and Agee 1996; Gessmann and Rubie 2000; Wade

and Wood 2005; Righter et al. 2011). A large P–T

range of 25–60 GPa and 2200–4200 K was obtained

with this model in which the fO2 was generally fixed

at two log units below the iron-wüstite buffer (IW-

2). The precondition of this hypothesis is that the P–

T conditions of chemical equilibrium between the

mantle and core correspond to the bottom of the

magma ocean. This scenario appears a little bit

Fig. 3 Metal segregation

mechanisms. Left panel: the

situation with small impactors

(the low-temperature scenario).

Only part of the mantle is

molten at the surface. Iron

accumulates at the bottom of the

magma ocean and forms molten

metal ponds. Liquid iron passes

through the solid mantle via

large-scale fracture and diapir

mechanisms and/or small-scale

percolation if the dihedral angle

is less than 60�. Right panel: the

situation with large impactors

(the high-temperature scenario).

The whole mantle is molten.

Whether the metal-silicate

chemical equilibrium is reached

depends on the size of droplets

formed from the impactor’s core
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simple given the Earth’s late-accretion history.

Nevertheless, the single-stage core formation model

is beneficial to establish an intuitive image of the P–

T conditions for metal-silicate equilibrium during

core formation.

(2) Continuous core formation In a more realistic

picture of core formation, Earth accreted its mass

gradually with the changing conditions of core

formation. Wade and Wood (2005) proposed the

continuous core formation model in which each

batch of incoming planetesimals would equilibrate

with magma oceans on Earth. The metal-silicate

equilibration P–T conditions would increase during

the growth of the core. Thus, oxygen fugacity should

not be fixed. Otherwise, the abundance of siderophile

elements in the mantle cannot be reproduced. Rubie

et al. (2011) argued that the fO2 increased by * 2

log units during accretion. Consequently, the FeO

content in the mantle would increase from less than 1

to 8 wt%. Three major mechanisms for elevating the

mantle oxidation state have been proposed. First, Si

partitions into the core, which leads to the increase

of FeO content in the mantle by the reaction:

2Feþ SiO2 ! 2FeOþ Si

core mantle mantle core
ð1Þ

Second, accreted materials become more oxidized

during the later stages of accretion. The third

mechanism is the disproportionation of ferrous iron

in the mantle (Wade and Wood 2005). Alternatively,

core formation might occur under relatively oxidiz-

ing conditions (Rubie et al. 2004; Siebert et al.

2013). In this model, the initial FeO content

was * 20 wt% in the mantle. Thus, a large amount

of FeO could have been partitioned into the core

during the accretion to reach the current FeO value

of 8 wt% in the mantle. However, if a small amount

of Si is also partitioned into the core, this model

would fail based on the mass balance (Siebert et al.

2013; Rubie et al. 2015).

(3) Multistage core formation. The preliminary multi-

stage model is based on an idealized accretion

scenario in which Earth accreted through collision

with different impactors that had * 10 % of the

Earth’s mass (Rubie et al. 2011). Compared with the

previous models, the bulk compositions of accreting

bodies were determined in terms of their nonvolatile

elements, while the oxygen content was the main

compositional variable. Only a highly reduced

composition and a relatively oxidized composition

were adopted for simplification. The best fit indicates

that Earth initially accreted from reduced materials

by 60–70 % and then from more oxidized materials

by 30–40 %.

The multistage core formation model has been signifi-

cantly improved with N-body accretion simulations and the

Grand Tack accretion model (Walsh et al. 2011; Rubie

et al. 2015). The accreted materials are classified based on

the heliocentric distance. The simulations indicate that

metal-silicate equilibration pressures are, on average,

60–70 % of core-mantle boundary pressures at the time of

each impact. Meanwhile, a large fraction of the impactors’

iron core (70–100 %) could equilibrate with the silicate

portion of protoplanets during each core formation event.

The model also brings constraints on the light elements in

the Fe-rich cores. 8–9 wt% Si, 2–4 wt% O, and 10–60 ppm

H were suggested for the Earth, whereas less than 1 wt% Si

and O for Mars (Rubie et al. 2015).

2.2.4 Chronometer and timescale of terrestrial

accretion/core formation

Over the years, the formation of the Solar System has been

explained by many different models. In general, timing is

an essential factor in understanding the beginning of the

Solar System, the rate of accretion, and the age of planet

formation. Thus far, a good number of short-lived isotopes

have been employed as the chronometer of core formation,

such as 182Hf–182W, U–Pb (Harper Jr and Jacobsen 1996;

Yin et al. 2002; Halliday 2004; Jacobsen et al. 2008; Kleine

and Walker 2017), 50Ti, 54Cr, 92Mo, 100Ru (Dauphas 2017;

Brasser et al. 2018; Carlson et al. 2018; Woo et al. 2018),
48Ca/ 44Ca (Schiller et al. 2018), atmospheric 36Ar/ 38Cr,
20Ne/ 22Ne (Marty 2012; Lammer et al. 2020b), 3He

abundance in the mantle, and D/H in Earth’s sea water

(Lammer et al. 2020b).

Hf-W is one of the most useful chronometers to deter-

mine the time of core formation. A brief review of its

principle is provided here (Jacobsen 2005; Kleine et al.

2009). The now-extinct radionuclide 182Hf decayed to
182W with a half-life (t1/2) of 8.9 Ma, comparable to the

timescale of terrestrial planet formation. Both Hf and W

are refractory; therefore, little Hf-W fractionation was in

the nebula gas and dust. However, core-mantle segregation

resulted in substantial Hf-W fractionation since lithophile

Hf strongly partitions into silicate mantle, while W is

moderately siderophile preferentially entering the metallic

core. Thus, for core formation before the extinction of
182Hf (several times of its half-life), the mantle would have

excess 182W. On the other hand, for core formation after

the extinction of 182Hf, there would be no endogenetic
182W in the mantle. Therefore, the abundance of 182W in

the mantle can be adopted to determine the timing of the

core formation. Note that the Hf/W chronometer depends
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on several factors, including the initial Hf/W ratio in the

bulk composition of the planets, the proportion of the core,

and the degree of the metal-silicate partition (Righter and

Shearer 2003).

The formation of the first solid grains in the Solar

System (Ca-Al-rich inclusions, CAIs) has been defined as

the beginning of the Solar System with an absolute age of

4,567.30 ± 0.16 Ma (Connelly et al. 2012). CAIs were

largely considered to form in the hot inner protoplanetary

disk, whereas some studies suggest CAIs formed in the

outer Solar System (Warren 2011; Larsen et al. 2020). The

growth of Mars was nearly completed when the nebula disk

dissipated at 3.3–4.5 Ma following the formation of CAIs

(Bollard et al. 2017; Wang et al. 2017). At the same time,

Earth only accreted 0.5–0.6 of its total mass (ME). Earth

accreted most of its mass ([ 0.8 ME) within the first

10–30 Ma. The Moon-forming event brought Earth’s main

phase of accretion to an end between 30 and 100 Ma

(Jacobsen 2005; Halliday 2008; Barboni et al. 2017; Con-

nelly et al. 2019).

3 Interdisciplinary constraints on terrestrial core
composition

Earth’s core constitutes about one third of the total mass

ME and its component is still under debate. Since no direct

core specimen is available, our understanding of the

Earth’s core primarily depends on geochemical fingerprints

and geophysical observations. Specifically, seismology,

geodesy, paleomagnetism, and isotope geochemistry pro-

vide direct constraints on the structure and state of the core;

and geochemistry, cosmochemistry, and meteoritics guide

the identity and abundance of light elements in the core.

Besides, high P–T experiments and ab initio calculations

bring further constraints on the composition and evolution

of the Earth’s core.

3.1 Cosmochemical constraints

In this section, the Earth’s core composition is discussed

from a cosmochemical perspective. A four-step process is

summarized by McDonough (2014) to build up cosmo-

chemical estimates of core composition: (1) assess the

composition of the BSE; (2) define a volatility curve for the

planet based on the abundances of volatile lithophile ele-

ments in the BSE; (3) calculate the bulk composition of the

Earth based on the volatility curve defined in step (2); and

(4) estimate the core composition by subtracting the BSE

composition from the composition of the bulk Earth. The

compositional models of the BSE were generally derived

from mantle xenoliths and cosmochemical data (McDo-

nough and Sun 1995; Palme and O’Neil 2014). Assuming

no lithophile elements exist in the iron-rich core, the

volatile trend at *1 AU from the Sun can be built from the

negative correlation between the relative abundance of

element and the log 50 % condensation temperature at

10-4 atm (Fig. 4). Then the composition of the bulk Earth

can be derived based on the abundances of lithophile ele-

ments and iron partitioning between the mantle and core

(McDonough 2001).

One core compositional model was established using the

method by McDonough (2014) (Table 1). In addition to Fe

and Ni (Fe/Ni = 16.5), several candidate light elements

have been suggested to exist in the core (e.g., H, C, S, Si, P,

O, and N). The total content of S, C, and P may only

constitute a minor fraction (* 2.5 wt%) of the core, which

is not enough to account for the core density deficit of

Earth’s outer core (McDonough 2014). Si (6 wt%) or O

(3 wt%) may be the most abundant light element in the

core. Notably, the solubility of Si in the metallic iron melt

are greatly affected by the existence of O and extreme P–T

conditions (Li and Fei 2014; Hirose et al. 2017).

3.2 Metal-silicate partitioning

3.2.1 Chemical partitioning rules

Siderophile elements tended to migrate from the BSE to the

metallic core, especially before the crystallization of

magma oceans. The partition of an element M can be

expressed in a simplified way:

Fig. 4 Element abundance in the bulk silicate Earth (BSE) as a

function of 50 % condensation temperature. The abundance in the

BSE and those in the CI carbonaceous chondrites are normalized to

MgBSE/MgCI = 1. The abundances of elements against the 50 %

condensation temperature are from a gas of solar composition at the

pressure of 10-4 bar. The depletion of elements in the BSE could be

attributed to volatilization and chemical partitioning between silicate

and metal. Modified from McDonough (2014)
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MOsilicate
n=2 ¼ Mmetal þ n

4
Ogas

2 ð2Þ

where n is the valence of ion M in the silicate. The dis-

tribution of elements between the metallic core and the

BSE can be expressed as partition coefficients:

Dmetal�silicate
M ¼ Xmetal

M =Xsilicate
M ð3Þ

where Xmetal
M and Xsilicate

M are the concentration of M in metal

and silicate (in wt% or molar ratio), respectively. Once the

concentration of a specific element in the BSE and its

partition coefficient at the metal-silicate equilibrium con-

ditions are ascertained, one could derive the light element

concentration in the core.

Oxygen fugacity is an important factor of the partition

coefficient, as shown in reaction (2). To separate the par-

tition coefficient from oxygen fugacity, one can normalize

the partition of element M to iron in the form of an

exchange reaction (Wade and Wood 2005):

MOsilicate
n=2 þ n

2
Femetal ¼ FeOsilicate þMmetal ð4Þ

The distribution coefficient KD is defined as:

KD ¼
Dmetal�silicate

M

ðDmetal�silicate
Fe Þn=2

¼ ðX
metal
M ÞðXsilicate

FeO Þn=2

ðXsilicate
MOn=2

ÞðXmetal
Fe Þ

n=2
ð5Þ

in which X is the molar ratio. This method is convenient

since the precise definition of oxygen fugacity is not

obligatory. On the one hand, the equilibrium constant Ka of

the reaction (3) relates to the distribution coefficient KD:

Ka ¼ KD �
ðcmetal

M Þðcsilicate
FeO Þn=2

ðcsilicate
MOn=2

Þðcmetal
Fe Þ

n=2
ð6Þ

where the c is the activity coefficient of a solute in metal or

silicate. The activity coefficient of an element in molten

iron can be obtained from the Steelmaking Data Source-

book (Kagan and Lyubutin 1988), whereas silicate melts

lack this data. Generally, the activity coefficient of an

element in silicate melts is expressed by a first-order

approximation of the melt structure NBO/T (the abbrevi-

ation for the molar ratio of non-bridging oxygens to

tetrahedrally coordinated cations) (Mysen et al. 1982;

Mysen 2003). On the other hand, the equilibrium constant

Ka relates to the free energy DG
�

of the reaction (3):

Table 1 Candidate light elements in Earth’s outer core

O Si S C H N

Geochemical constraints 4 7.3 2.3 Allègre et al. (1995)

0 6 1.9 0.2 0.06 McDonough (2014)a

3 0 1.9 0.2 0.06 McDonough (2014)a

\ 1 4–5 1.9 0.2 0.1 Wood et al. (2006)

Metal-silicate partitioning 0.5 8 2 Rubie et al. (2011)

4.5–5.5 1.5–2.2 Siebert et al. (2013)

5.1–6.6 2.1–2.6 Fischer et al. (2015)

1 2–4 0.15 0.035 0.003 Zhang and Yin (2012)

1–1.2 Suer et al. (2017)

0.3–0.6 Tagawa et al. (2021)

0.09–0.2 Fischer et al. (2020)

\ 0.01 Speelmanns et al. (2019)

Mineral physics 0.5 9.5 Huang et al. (2011)

10 Zhang et al. (2014)

3.7 1.9 0 0 Badro et al. (2014)

2.7–5 2–3.6 Badro et al. (2015)

0.5–1 5–6 1.8–1.9 2 Litasov and Shatskiy (2016)

1.6 0.7 Li et al. (2018)

2.7 2.2 1.0 Yokoo et al. (2019)

8.2 0.7 2.0 Yokoo et al. (2019)

All the values are in the unit of wt%
aTwo alternative compositions were provides in one research
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log Ka ¼ �
DG

�

RT
¼ �DH

� � TDS
� þ PDV

�

RT
ð7Þ

where R is the gas constant, P is the pressure, T is the

temperature, and DH�, DS
�
, and DV

�
are the enthalpy,

entropy, and volume change of the reaction, respectively.

Finally, the partition coefficient DM can be expressed as:

log DM ¼ aþ b

T
þ c � P

T
þ d � nbo=t � n � DIW

2

� log
ðcmetal

M Þ
ðcmetal

Fe Þ
n=2

ð8Þ

where the regression constants a, b, and c are related to

DH�, DS
�
, and DV

�
, respectively. In Eq. (8), the partition

coefficient of a chemical species is related to the pressure,

temperature, oxygen fugacity, and composition of silicate

melt and liquid metal. To derive the partitioning behavior

of light elements between silicate and metal, the accurate

P, T, fO2, and core composition must be determined first.

The following discussion presents a general understanding

of the metal-silicate partitioning during Earth’s core

formation.

Metal-silicate equilibrium under low P–T conditions

cannot explain the excess abundance of moderately side-

rophile elements (MSEs, e.g., Ni, Co, Cu, Mo, and W) in

the mantle. In the past few decades, laser-heated diamond

anvil cell techniques coupled with micro-zone analysis

have significantly boosted high P–T measurements in this

research field (Bouhifd and Jephcoat 2011; Siebert et al.

2012, 2013). In these MSEs, Ni and Co have received the

most attention due to their poor volatility. However, by

extrapolating partition coefficients from low P–T to

extremely high P–T conditions, previous studies exhibit

large discrepancies for magma ocean depths, ranging from

25 GPa and 2000 K to 60 GPa and 4000 K (Fig. 5)

(Righter et al. 1997; Li and Agee 2001; Chabot et al. 2005;

Wade and Wood 2005; Siebert et al. 2011). In particular,

45–60 GPa and 3100–3800 K are required to fit the Ni and

Co abundance in the mantle, corresponding to a single-

stage 1500 km deep magma ocean. In a more realistic

model of the continuous core formation (Wade and Wood

2005), the P–T conditions of metal-silicate equilibrium

would increase with the increasing magma ocean depth. A

depth of silicate-metal equilibrium corresponding to 50–55

GPa is needed to satisfy the Ni and Co abundance in the

mantle for the latter model.

Furthermore, the depletion of slightly siderophile ele-

ments (SSEs, e.g., V, Cr, Mn, and Nb) in the mantle sug-

gested a much higher equilibrium temperature at present-

day oxygen fugacity (Wade and Wood 2005; Corgne et al.

2008, 2009; Siebert et al. 2011). However, such a high

temperature would exceed the mantle liquidus and is

inconsistent with the scenario that the temperature at the

bottom of magma oceans should lay between the liquidus

and solidus of silicate mantle. Alternatively, core formation

could have occurred under relatively reduced conditions

because low fO2 would enhance the siderophile nature of

SSEs. More specifically, the initially accreted materials

were reduced with a low fO2 roughly at IW-4 (\ 1 wt%

FeO in the silicate mantle). In the history of continuous

accretion and core formation, the redox state increased to

the present-day * IW-2.3 (* 8 wt% FeO in the silicate

mantle). The fO2 might increase through the following

three procedures individually or jointly: (1) accreting

materials becoming more oxidized with time (Rubie et al.

2011), (2) oxidization involving replacement reactions of

Fe, Si, and O between silicate and metal (Eq. 1) (Wood

et al. 2006; Corgne et al. 2008; Javoy et al. 2010), and (3)

disproportionation of ferrous iron in perovskite (Frost et al.

2004; Wade and Wood 2005; Trønnes et al. 2019). Con-

trary to the initially reduced model, Siebert et al. (2013)

suggested an initially oxidized model with the fO2 between

IW-1 and IW-2. Besides, it is necessary to note that, as an

index of the chemical potential of oxygen, the oxygen

fugacity changes with pressure and temperature even if

chemical composition does not change (Campbell et al.

Fig. 5 The core-mantle equilibrium’s pressure and temperature

conditions to match the present Ni and Co concentrations in the

BSE. The single-stage core formation model is adopted with the

oxygen fugacity set at around IW-2. The solidus–liquidus temperature

of the mantle and the liquidus of iron further constrain the

temperature of metal-silicate equilibrium conditions. The silicate

mantle’s solidus and liquidus curves are from the mean value after

Fiquet et al. (2010) and Andrault et al. (2011). The liquidus curve of

pure iron is from Anzellini et al. (2013). The square symbols are the

P–T solutions suggested from previous works: L96 (Li and Agee

1996), G00 (Gessmann and Rubie 2000), L01 (Li and Agee 2001),

B03 (Bouhifd and Jephcoat 2003), W05 (Wade and Wood 2005), B11

(Bouhifd and Jephcoat 2011), R11 (Righter and Chabot 2011), S11

(Siebert et al. 2011), S12 (Siebert et al. 2012), F15 (Fischer et al.

2015)
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2009; Righter and Ghiorso 2012; Armstrong et al. 2019;

Deng et al. 2020).

Regardless of the fO2 changing during core formation,

Si and O have been proposed as the two predominant light

elements in the core (Bouhifd and Jephcoat 2011; Rubie

et al. 2011; Siebert et al. 2013; Tsuno et al. 2013). For

instance, in the initially reduced model with the fO2 of IW-

3.5, the abundances of Si and O in the core were calculated

to be 6.7 and 2.1 wt%, respectively. In the initially oxi-

dized model with the fO2 of IW-2, Si and O contents in the

core were predicted to be 2.2 and 4.5 wt%, respectively.

The co-partitioning behavior of Si and O is highly related

to P–T conditions. At low pressures, the solubilities of Si

and O in the metal are very limited and mutually exclusive

(Gessmann et al. 2001; Kawazoe and Ohtani 2006). The

maximum contents of Si and O in the metal could increase

to 11.3 and 8.8 wt% at 100 GPa and 5700 K, respectively

(Pigott et al. 2015).

3.2.2 Chemical partition of light elements H, He, C, N,

and S

How other light elements (e.g., H, He, C, N, and S) were

distributed between silicate and metal has been studied

using both high P–T partitioning experiments and first-

principle molecular dynamics (FPMD) simulations. How-

ever, high P–T experimental data are scarce for now. Sulfur

is considered an important light element in the Earth’s core

(McDonough and Sun 1995; Righter et al. 1997). There-

after, sulfur partitioning between silicate and metal has

been extensively investigated (Li and Agee 2001; Rose-

Weston et al. 2009; Boujibar et al. 2014; Suer et al. 2017).

Low-pressure experiments (\ 25 GPa) showed that sulfur

might be more siderophile with increasing pressure and

oxygen fugacity, but it could become more lithophile with

increasing temperature (Mavrogenes and O’Neill 1999;

Rose-Weston et al. 2009; Boujibar et al. 2014). Suer et al.

(2017) reported that the partition coefficients of sulfur D
s=l
S

at high pressures are nearly an order of magnitude less than

those results extrapolated from low-pressure experiments

(Suer et al. 2017). Consequently, Earth’s core likely con-

tains less than 1.2 wt% sulfur based on the current sulfur

content in the mantle (maximum 280 ppm) in the

homogenous accretion model (Stevenson 1990). On the

other hand, 2 wt% sulfur might have partitioned into the

core if additional sulfur was added during Earth’s final

20% stage of accretion.

FPMD calculations indicate that carbon is moderately

siderophile at high P–T. The partition coefficient of carbon

(DC) is 9 ± 3 at 40 GPa and 3200 K, resulting in a carbon

concentration of 0.15 wt% in the core (Zhang and Yin

2012). A recent partitioning experiment at 37–59 GPa and

4200–5200 K showed consistent DC values between 1 and

100, corresponding to a maximum of 0.09 ± 0.04 to

0.20 ± 0.10 wt% carbon in the core, respectively (Fischer

et al. 2020). On the contrary, the DC values extrapolated

from lower P–T experiments are two orders of magnitude

more siderophile (Dasgupta et al. 2013; Chi et al. 2014;

Armstrong et al. 2015; Li et al. 2016a; Kuwahara et al.

2019; Malavergne et al. 2019). Thus far, the correlation

between the DC values and relevant parameters are con-

troversial. It was reported that the DC values changed with

pressure positively by Dasgupta et al. (2013), negatively by

Malavergne et al. (2019), or irrelevantly by Fichtner et al.

(2021). High temperature may positively influence the DC

(Li et al. 2015, 2016a), though Fichtner et al. (2021) sug-

gested a negligible temperature dependence. Moreover, the

composition and structure of silicate melts may influence

the DC. Fichtner et al. (2021) pointed out the DC decreased

from 640 ± 49 to 14 ± 3 with NBO/T from 1.04 to 3.11,

whereas Malavergne et al. (2019) suggested no effect of the

NBO/T on the DC. Interestingly, carbon and hydrogen/

silicon appear mutually exclusive in metal liquids, and

carbon concentration may decrease with the existence of H

in the core (Hirose et al. 2019; Vander Kaaden et al. 2019).

Hydrogen is mainly supposed to be siderophile though

debates still exist. Pioneering work on hydrogen parti-

tioning reported the siderophile nature of hydrogen and the

positive correlation between P–T and partition coefficient

DH (Kuramoto and Matsui 1996). Okuchi (1997) confirmed

the siderophile property of hydrogen up to 7 GPa and

discovered a stable FeH phase. More recent high P–T

experiments of hydrogen partitioning between iron and

ringwoodite further advocated the siderophile nature of

hydrogen (Shibazaki et al. 2009). However, the latest

experiments by Clesi et al. (2018) and Malavergne et al.

(2019) suggested that hydrogen is lithophile at high pres-

sures to 20 GPa with a low DH value of * 0.2. At the same

time, FPMD results indicated the slightly lithophile nature

of H with the DH value of 0.7(1) at 40 GPa and 3200 K

(Zhang and Yin 2012). Contrary to the previous simula-

tions, Li et al. (2020) theoretically predicted that hydrogen/

water is siderophile under the P–T conditions of core for-

mation for both reducing and oxidizing scenarios. It is

estimated that [ 75% primitive hydrogen entered the core

at 50 GPa and 3500 K. The latest high P–T partition

experiment also supported the siderophile behavior of

hydrogen with the DH value of greater than 29 at 30–60

GPa and 3100–4600 K (Tagawa et al. 2021). The dis-

crepancy above may be attributed to the instability of the

FeH sample at ambient P–T conditions and the presence of

carbon in metal due to the use of graphite sample capsules

in large-volume press experiments. Therefore, hydrogen

could escape before the recovered sample is analyzed
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(Clesi et al. 2018; Malavergne et al. 2019; Tagawa et al.

2021).

As one of the most abundant elements in the Solar

System, nitrogen has also been studied for its partition

behavior between metal and silicate. Early studies sug-

gested the moderately siderophile behavior of N at high

pressures with DN values of 1–150 (Kadik et al. 2011;

Roskosz et al. 2013; Li et al. 2016b; Yoshioka et al. 2018).

FPMD calculations were consistent with the above exper-

imental results with the DN of 1.8 ± 0.2 at 40 GPa and

3200 K (Zhang and Yin 2012). Furthermore, iron nitrides

discovered in superdeep diamond inclusions support side-

rophile N in the deep Earth (Litasov et al. 2017). However,

two recent studies revealed the DN values heavily depen-

ded on oxygen fugacity. Dalou et al. (2017) reported the

DN decreases from 24 ± 3 at IW-0.4 to 0.3 ± 0.1 at IW-

3.5, and suggested that nitrogen behaves siderophile at

modestly reduced conditions ([ IW-2.2) but lithophile at

more reduced conditions (\ IW-2.2). Additionally, Speel-

manns et al. (2019) found that the DN value decreased to

the lithophile side with increasing temperature. It is noted

that the above two experiments were performed at rela-

tively low pressures of less than 6 GPa, and those findings

need to be evaluated at higher pressures as a function of

oxygen fugacity.

The core has been considered a hidden reservoir of

noble gases over the past two decades due to high
3He=4He, 20Ne=22Ne, and 36Ar=40Ar in some of the oceanic

island basalts (Honda et al. 1991; Graham 2002). Here, we

make a brief review focused on He. Pioneer work by

Matsuda et al. (1993) concluded that He and other noble

gases exhibited a similar partitioning behavior with parti-

tion coefficient D values approximately changing

from * 4 9 102 at 0.5 GPa to * 3 9 10-4 at 10 GPa.

However, recent experiments by Bouhifd et al. (2013)

indicated the DHe was constant at * 10-2 up to 40 GPa.

The FPMD results by Zhang and Yin (2012) also found that

the DHe remained nearly constant at * 10-2 between 20

and 135 GPa at 5000 K, but it was decreased by one order

of magnitude to * 10-3 when decreasing to 3500 K. In

short, more work is needed to ascertain the effect of the

redox state and silicate/metal composition on the partition

behavior of He and other noble gases.

3.2.3 Isotope fractionation during core formation

Isotope fractionation occurs between two phases with dif-

ferent bonding environments, providing constraints on

pinning down the species and concentration of light ele-

ments in the core (Shahar et al. 2016; Liu et al. 2017).

Though the difference between the BSE and chondrites are

small, the advances in high-resolution multi-collector

inductively-coupled plasma mass spectrometry (MC-ICP-

MS) and nuclear resonant inelastic x-ray scattering recently

made it possible to detect tiny isotope fractionation of Fe

and light elements between silicate and metal (Halliday

et al. 2009; Dauphas et al. 2012).

3.2.3.1 Silicon isotopes Georg et al. (2007) argued that

the Si isotope difference between the BSE and carbona-

ceous chondrites is 0.2 %, corresponding to 7 wt% Si in

the mantle with the metal-silicate equilibrium temperature

of 2000 K. Recent studies updated the difference to * 0.1

%, provided that the Si isotope composition in chondrites

varies from - 0.75 to - 0.36 % (Fitoussi et al. 2009;

Ziegler et al. 2010; Armytage et al. 2011). The discrepancy

between different research may result from the matrix

effects in metal during data collecting in metal and/or the

disequilibrium between silicate and metal in experiments

(Hin et al. 2014; Bourdon et al. 2018). Therefore, the

method still needs to be improved, and more experimental/

theoretical work will be undertaken in the future.

3.2.3.2 Carbon isotopes The carbon isotope composition

of the BSE is * - 5% while those for Mars, Vesta, and

chondrites are * - 20 % (Grady et al. 1997; Grady and

Wright 2003; Wood et al. 2013). Together with mantle

degassing, metal-silicate segregation played a role in car-

bon isotope fractionation (Satish-Kumar et al. 2011; Horita

and Polyakov 2015). However, the carbon isotope frac-

tionation during core formation might be too small

(* 2.4 %) compared with the observed difference

between the BSE and the bulk Earth (15 %) in a single-

stage core formation model. Wood et al. (2013) suggested

repeated episodes of equilibrium to solve this problem.

3.2.3.3 Nitrogen isotopes The non-chondritic C/N ratio

of the BSE reflects the depletion of nitrogen in the silicate

Earth (Marty 2012). Metal-silicate equilibrium during the

core formation has been applied to interpret the ‘missing

nitrogen’ mystery, together with high volatilization or the

nature of heterogeneously accreted materials. However,

there are few studies on nitrogen isotope fractionation

during core formation to date (Li et al. 2016b; Dalou et al.

2019). Li et al. (2016b) performed experiments at 1.5–7.0

GPa and 1600–1800 �C, and found the DN values ranged

from 1 to 150 with D15Nmetal�silicate from - 5.5 to - 1.1%
(- 3.5 ± 1.7%, on average). To fit the present-day d15N

of - 5%, the metallic core should be substantially defi-

cient in 15N if Earth mainly accreted from enstatite chon-

drites. Combining the Dmetal�silicate
N , the D15Nmetal�silicate and

the concentration of N of 0.8 ppm in the mantle (Marty

2012), the amount of N in the core is estimated to be 4–

16 ppm in the single stage core formation model (Righter
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and Chabot 2011), or up to 5000 ppm in the continuous

core formation model (Wood et al. 2013). Dalou et al.

(2019) performed N partition experiments between Fe–C–

N alloy and basaltic melts at 1 GPa and 1400 �C over the

oxygen fugacity range of IW-3.1 to IW-0.5. The

D15Nmetal�silicate values were from - 257 ± 22 % to

- 49 ± 1 % over the redox range. The large discrepancy

between these two studies may be attributed to the different

P–T conditions, or perhaps, the disequilibrium in some N

isotope fractionation experiments.

3.2.3.4 Sulfur isotopes Sulfur is a siderophile element,

and the mass balance rule can constrain its concentration in

the core. The mantle contains * 200 ppm S based on

accessible mantle samples, which only accounts for *
3 % of the total S abundance of the solid Earth (Lorand

et al. 2013). Thus, there could be * 2 wt% S in the core

(Dreibus and Palme 1996; McDonough 2014). As for S

isotopes, the mantle is depleted in heavy S isotopes. Mantle
34S/32S is smaller by 1% compared to chondrites, reflecting

the effect of core formation on sulfur isotope fractionation

(Labidi et al. 2013). The first high P–T experiments on

sulfur isotope fractionation between metal and silicate were

conducted at 1 GPa and 1850 �C, resulting in the

D34Smetal�silicate of ? 2.2 ± 1.4 % (Labidi et al. 2016).

This pioneering work suggested that the S isotope frac-

tionation factor is highly dependent on the structure of

silicate melts, especially the strength of sulfur bonding.

The D34Smetal�silicate values change from ? 0.2 ± 0.1 %
to ? 1.4 ± 0.2 % with increasing boron and aluminum

concentration in silicate melts at 1–1.5 GPa and 1650 �C.

Based on the above-mentioned isotopic estimates, 85% to

97% of the bulk S should be contained in Earth’s core,

which agrees well with the cosmochemical estimates.

Nevertheless, further studies are needed to better under-

stand the contributions of late veneer accretion, degassing,

and silicate crystallization on the concentration of S iso-

topes in the mantle.

3.2.3.5 Hydrogen isotopes The dD of the BSE and car-

bonaceous chondrites are close to each other (- 37 % and

- 101 ± 60 %, respectively) (Hallis 2017). Therefore, the

source of most hydrogen or water on Earth is believed to be

CI carbonaceous chondrite-like materials. Other sources

including cometary water or solar nebula gas show much

different H isotope compositions, ? 926 % and - 865 %,

respectively (Geiss and Gloeckler 1998; Altwegg et al.

2015). The difference of H isotope compositions between

the BSE and CI chondrites indicates that some H parti-

tioned into the core (Andreev and Magomedbekov 2001).

The hydrogen concentration in the core has been probed

through geochemical and cosmochemical aspects, but those

results conflict with each other (Wood et al. 2006; Zhang

and Yin 2012; McDonough 2014; Clesi et al. 2018). Wu

et al. (2018) proposed a model of hydrogen storage and

isotope fractionation between the mantle and core by

parameterizing the isotopic fractionation factor and initial

bulk dD value of chondrites. In this model, the best fit

revealed that * 7–8 oceans H could have been accreted

from chondrites, in which 5 oceans H are in the core with

the dD of - 230% (D/H of 120 9 10-6) and 3 oceans H

are in the BSE with the dD of - 37 % (D/H of

150 9 10-6).

3.2.3.6 Iron isotopes Fe isotope concentration was first

detected for chondrites and silicate samples (basalts and

peridotites), but no significant difference was present

(Poitrasson et al. 2004; Weyer et al. 2005; Williams et al.

2006; Craddock et al. 2013; Teng et al. 2013; Sossi et al.

2016). Similarly, experiments and calculations were also

performed to figure out the Fe isotope fractionation

between silicate and metal (Polyakov 2009; Hin et al.

2012; Shahar et al. 2016; Elardo and Shahar 2017; Liu

et al. 2017). In general, earlier studies found no obvious Fe

isotope fractionations between silicate and metal alloys.

Liu et al. (2017) found no significant Fe isotope fraction-

ation between silicates and iron-rich alloys (H, C, O, Si, Ni,

and S). Nuclear resonant inelastic x-ray scattering mea-

sures on iron and iron-rich alloys were consistent between

Shahar et al. (2016) and Liu et al. (2017), except for the

difference in mantle bridgmanite and melt. In addition, Ni

may play an important role in the Fe isotope fractionation

between iron alloys and silicate melts (Elardo and Shahar

2017).

3.3 Geophysical constraints

Apart from geochemical and cosmochemical signatures

(e.g., elemental partitioning and isotopic fractionation of

light elements), the physical properties of iron-rich alloys

provide powerful constraints on the species and abundance

of light elements in the Earth’s core.

3.3.1 Density and velocity of Fe-light element alloys

It serves as an important constraint on the Earth’s core

composition that the compressibility and density-velocity

profiles of iron-rich alloys under high P–T conditions are

compared with observed seismic models, such as the pre-

liminary reference Earth model (PREM) and AK135 model

(Dziewonski and Anderson 1981; Kennett et al. 1995). The

density-pressure profiles of liquid iron alloyed with S, Si,

C, O, and H have been measured by using a battery of

probes, including the sink/float method (Nishida et al.

2008; Tateyama et al. 2011), x-ray absorption method
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(Sanloup et al. 2011; Chen et al. 2014b; Zhu et al. 2021),

x-ray diffuse scattering analysis (Morard et al. 2013),

shock-wave experiments (Zhang et al. 2014; Huang et al.

2019), and ab initio calculations (Ichikawa and Tsuchiya

2020). Sata et al. (2010) found that the incorporation of

light elements (Si, O, S, and C) reduces the density and

enhances the compressibility of pure Fe (Fig. 6). However,

Si only shows a small effect on the density/compressibility

on pure Fe compared with other light elements. It is likely

due to the difference in atomic site occupation. Si substi-

tutes for Fe while S, H, and C occupy interstitial sites

(Waseda et al. 1980; Ikuta et al. 2019).

The velocity–pressure (density) profiles of iron and iron-

rich alloys have been extensively investigated at high

pressure using shock wave techniques, inelastic x-ray

scattering, picosecond acoustics, and ab initio calculations

(Lin et al. 2005; Kantor et al. 2007; Vočadlo et al. 2009;

Mao et al. 2012; Chen et al. 2014a, 2018; Decremps et al.

2014; Zhang et al. 2014; Antonangeli and Ohtani 2015;

Ohtani et al. 2015; Prescher et al. 2015; Liu et al. 2016a;

Lai et al. 2020) (Fig. 6). For now, the measurements of

velocity under simultaneously high P–T conditions are still

challenging. Instead, most of the velocity–pressure (den-

sity) data were reported at room temperature and extrapo-

lated to the core conditions using Birch’s law (Birch 1964).

The incorporation of light elements shifts the velocity-

density profile of pure iron under the core conditions.

However, the reliability of Birch’s law under high tem-

perature is of debate (Lin et al. 2005; Gao et al. 2008).

Recently, Mao et al. (2012) and Liu et al. (2014) suggested

that the empirical power-law function better fits the

velocity-density data. To date, many potential assemblies

of light elements have been suggested to exist in the core,

including Fe–9.5S–0.5O (Huang et al. 2011), Fe–5Ni–6S–

2Si (Morard et al. 2013), Fe–9Ni–10Si (Zhang et al. 2014),

and Fe–3.7O–1.9Si (Badro et al. 2014) (all the values are

in wt%). In short, S, Si, and O tend to be the most

important light elements in the core. However, the con-

clusion is not unique, and multiple interdisciplinary con-

straints need to be further evaluated.

3.3.2 Melting reduction of light elements

In addition to the density and velocity, light elements also

affect the melting temperature of Fe. The melting tem-

perature of liquid outer core materials provides a lower

bound of the core-mantle boundary (CMB) temperature.

The solidus temperature of mantle peridotite was used to

set the upper boundary of the temperature at the CMB

(Garnero et al. 2016; Morard et al. 2017). A reasonable

estimate of the CMB temperature boundary is

3750–4200 K (Fiquet et al. 2010; Andrault et al. 2014;

Pradhan et al. 2015; Morard et al. 2017). Therefore, the

reduction of melting temperature due to the presence of

light elements could constrain the outer core composition.

The solidus temperature of the iron-rich Fe-light ele-

ment (Fe–X) binary system could be estimated by linearly

linking the melting point of pure iron and the eutectic

melting point of the Fe–X system (Morard et al. 2017). At

the CMB depth (136 GPa), the melting temperature of pure

iron could be as high as 4200 K (Anzellini et al. 2013).

Additionally, the eutectic melting temperatures of Fe–Si,

Fe–O, Fe–C, Fe-S at 136 GPa are 4300 K with 18 at% Si,

2870 K with 15 at% S, 2990 K with 11 at% C, 3200 K

with 30 at% O (Morard et al. 2011, 2017; Fei and Brosh

2014; Lord et al. 2014) (Fig. 7). Notably, the geotherm of

the outer core should be higher than the melting curve.

Otherwise the outer core would be solid now. A tempera-

ture jump between the geotherm and the melting curve of

outer-core liquid is estimated to be 400–900 K at the CMB

(Anzellini et al. 2013; Komabayashi 2014).

The accretion and metal/silicate partitioning studies

suggested that Si or O was the major light element in the

core (Siebert et al. 2013; Fischer et al. 2015). However, the

melting temperature of the binary Fe–Si system is too high

to keep the bottom mantle in a solid state. Considerable

amounts of C or S or a large amount of O (at least 2 wt%

C/S or 5 wt% O) are needed to reduce the melting tem-

perature of outer core materials, which is supposed to be

lower than the mantle solidus at the CMB (Morard et al.

2017). Kim et al. (2020) reported the lowest solidus tem-

perature of anhydrous pyrolytic material as low as 3430 K

at 136 GPa, about 700 K lower than the previous estimates.

The lower solidus temperature of mantle materials implies

more light elements in the outer core (more than 4 wt%

C/S or 10 wt% O for a binary Fe–X system). The present-

day outer core probably contains more than one kind of

Fig. 6 The density and VP for Fe-rich alloys. The colored squares and

circles are measured data for Fe-rich alloys, while the colored curves

fit the Birch’s law. The solid and dashed curves in black represent

pure iron. The crosses are the outer core and inner core. The datasets

are from Mao et al. (2012), Litasov and Shatskiy (2016), Chen et al.

(2018), Thompson et al. (2018), and references therein
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light element. The nonlinear interactions of multiple light

elements in the core may further decrease the melting

temperature of Fe alloys.

3.3.3 Liquidus phase relations of iron-rich alloys

The chemical composition of the inner core is vital to

constrain the outer core since the former is growing out of

the latter. Chen et al. (2014a) and Prescher et al. (2015)

suggested Fe7C3 to be the main component of the inner

core, but the latest study implied that Fe7C3 is too light for

the inner core (Li et al. 2016c). More importantly, the

density jump across the inner core boundary (ICB) indi-

cates that the solid inner core is relatively depleted in light

elements compared to the liquid outer core (Masters and

Gubbins 2003; Ichikawa et al. 2014). As for the Fe–X

binary systems, more constraints can be provided accord-

ing to their liquidus phase relations. The liquidus field of

iron decreases in the Fe–C (Lord et al. 2009; Liu et al.

2016b; Mashino et al. 2019), Fe-S (Kamada et al. 2012;

Mori et al. 2017), and Fe–Si (Ozawa et al. 2016) binary

liquids with increasing pressure, but expands in the Fe–O

system (Oka et al. 2019). None of Si, C, or S could be the

dominant light element in the inner core because the con-

tent of these elements is not enough to support the density

jump across the ICB in a binary Fe–X system (Oka et al.

2019). Additionally, O cannot be the solo light element in

the inner core due to the limited solubility of O in solid Fe

up to 0.1 wt% at 330 GPa (Ozawa et al. 2010). Never-

theless, a certain amount of O should exist in the core

according to the accretion and core formation models

(Siebert et al. 2013; Fischer et al. 2015) and FPMD cal-

culations (Badro et al. 2014; Li et al. 2018).

A recent review summarized the standard Fe–X binary

systems and found that none of the binary systems can

account for all the properties of Earth’s core (Komabayashi

2021). The ternary Fe–X–Y alloy systems have been sug-

gested as the component of the core in recent years,

including Fe–Si–O, Fe–S–O, Fe–C–H, and Fe–Si–C

(Antonangeli et al. 2010; Hirose et al. 2017; Tateno et al.

2018; Mashino et al. 2019; Yokoo et al. 2019; Miozzi et al.

2020; Hasegawa et al. 2021). Strong interactions between

light elements occur in these alloy systems, altering the

solubility of light elements and even resulting in liquid–

liquid immiscibility (Hasegawa et al. 2021). For instance,

SiO2 forms in the Fe–Si–O ternary alloy liquid as it cools

because of the wide liquidus field of silica in the system

(Hirose et al. 2017). If Si is an essential component in the

outer core, some C or S should also be included to fit the

density and velocity of the seismic model (Li et al. 2018).

On the other hand, O is a plausible light component in the

outer core because its low solubility in the solid Fe could

explain the density jump across the ICB. In this scheme, a

S-poor (0–3 wt%) and O-rich (4–5.5 wt%) outer core, or a

C-bearing, S-poor, and O-rich (Fe84S3.4O8.4C4.2, Fe83.2-

S1.1O8.2C7.5) outer core could satisfy the criteria of density

and velocity simultaneously (Badro et al. 2014; Li et al.

2018).

4 Other terrestrial planets and small planetary
bodies

4.1 Mercury

Mercury is the densest and smallest terrestrial planet in the

Solar System (Anderson et al. 1987). The MESSENGER

(2008–2015) mission provided detailed structure informa-

tion about Mercury: a crust of * 50 km, a mantle of *
260 km, and a core of * 2030 km (Margot et al. 2012;

Smith et al. 2012; Zuber et al. 2012). The high S (3.5 wt%)

(Namur et al. 2016) and low FeO (1.5 wt%) (Nittler et al.

2011) contents of the surface are attributed to the highly

reduced accretion and differentiation history of Mercury

(Nittler et al. 2011; McCubbin et al. 2012). Mercury’s

redox condition (IW-7.3 to IW-4.5) is so reduced that a

large portion of Si would partition into the core since Si

becomes siderophile under reduced conditions (Mala-

vergne et al. 2010; Zolotov et al. 2013). A S-rich layer

should be extracted from the core since Fe–Si-S displays

Fig. 7 Melting temperature reduction of light elements at the CMB.

The liquidus temperature of pure Fe is from Anzellini et al. (2013).

The eutectic melting points and eutectic compositions for C, S, O, and

Si are from Morard et al. (2017). The expected temperature of Fe–X

binary systems for the outer core is shifted up by DT = 400–900 K to

account for the temperature difference between the adiabat and

melting curve of the outer core. The temperature of the outer core at

the CMB can be restricted by the solidus of peridotite and mid-ocean

ridge basalt (MORB) (Fiquet et al. 2010; Andrault et al. 2014;

Pradhan et al. 2015)
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liquid immiscibility at the silicate-metal equilibrium pres-

sures (4–7 GPa) and temperatures above the liquidus

temperature (Morard and Katsura 2010; Hauck et al. 2013).

The Si content in the core is estimated to be 15 wt% based

on geophysical models (Margot et al. 2018) or 20 wt%

based on the partition coefficient of Si (Cartier and Wood

2019). The S content in the core is estimated to be below

1.5 wt% assuming the bulk S content for Mercury is * 4

wt% (Nittler et al. 2011; Namur et al. 2016) (Table 2).

Meanwhile, some amount of carbon has been suggested in

the core, possibly at the wt% level, to satisfy the density

and bulk composition of Mercury; however, the abundance

of carbon is highly anticorrelated with silicon in iron-

dominated core (Cartier and Wood 2019; Vander Kaaden

et al. 2019; Knibbe et al. 2021).

4.2 Venus

Venus is often thought to be Earth’s sister planet because

of its similar mass, density, and orbit radii (Taylor et al.

2018). The main difference is a late (* 95 ± 32 Ma) giant

impact on Earth that did not exist for Venus (Jacobson

et al. 2014). The core composition is also affected by the

impact mixing efficiency (Zube et al. 2019). Thus far, there

are few constraints on the core composition of Venus.

Trønnes et al. (2019) estimated the light elements in

Venus’s core to be 6.2 wt% Si and 2.5 wt% O based on the

extrapolation from the composition of Mercury and Earth.

4.3 Mars

Mars is identified as the source of many meteorites,

including the Shergotty-Nakhla-Chassiny (SNC) group.

Radioisotope data of Martian meteorites show that the

accretion and differentiation of Mars took place rapidly

(Dauphas and Pourmand 2011; Bouvier et al. 2018). The

composition of meteorites also provides a cosmochemical

constraint on the composition of Mars. The Wänke and

Dreibus model family is the mostly accepted compositional

model of Mars (Morgan and Anders 1979; Dreibus and

Wänke 1987; Wänke and Dreibus 1988; Halliday et al.

2001; Taylor 2013). Later studies provided compositional

models from an isotopic approach by matching the O iso-

tope composition of SNC’s to mixtures of chondrites

(Lodders and Fegley 1997; Sanloup et al. 1999). A third

way is a geophysical approach to construct the mineralogy

of the interior of Mars, though the geophysical data of Mars

is still lacking (Khan and Connolly 2008; Khan et al. 2018;

Giardini et al. 2020; Stähler et al. 2021). Sulfur is sug-

gested to be the dominant light element in the core because

of its siderophile property at the P–T-fO2 conditions rele-

vant to Martian core formation (Lodders and Fegley 1997;

Taylor 2013; Steenstra and van Westrenen 2018; Brennan

et al. 2020). For example, Brennan et al. (2020) suggested

18–19 wt% S in the Martian core based on a multi-stage

model of Martian core formation. Si partitions in the

Martian core at a trace lever due to the slightly siderophile

property at the Martian core’s low P–T and high fO2

conditions (Fischer et al. 2015; Brennan et al. 2020). C and

H contents in the core are rarely constrained, but their

solubilities are reduced in a S-rich alloy system. There

would be less than 0.5 wt% C and 60 ppm H in the core if

16 wt% S is present (Clesi et al. 2018; Tsuno et al. 2018).

As for the O, most studies suggested the maximum content

of * 1 wt% due to the modest P–T conditions of metal-

silicate equilibrium (Ricolleau et al. 2011; Fischer et al.

2015; Brennan et al. 2020). However, other studies pre-

ferred an O content of a few percent high, assuming a high

Table 2 Core formation conditions and potential light elements in terrestrial planets

Core fraction

(wt%)

CMB pressure

(GPa)

Bulk fO2

(DIW)

Core composition

(wt%)

Si O S

Mercury 67 5.7 - 4.56 15–20 1.5 Margot et al. (2018) and Cartier and Wood (2019)

Venus 29 114 - 2.41 6.2

1.0

2.5

3.9

Aitta (2012) and Trønnes et al. (2019)

Eartha 33 136 - 2.21 5.1 2.6 1.9 McDonough (2014), Badro et al. (2015) and Fischer

et al. (2015)

Moon 2 4.8 - 1.87 6 Weber et al. (2011)

Mars 21 20 - 1.36 1 18 Brennan et al. (2020)

5 10–15 Stähler et al. (2021)

Vesta 18 0.1 - 1.10 12.8–16 Toplis et al. (2013)

Core fraction, CMB pressure, and oxygen fugacity data follow those from Trønnes et al. (2019) and references therein
aThe composition is inferred from the multiple constraints of cosmochemistry, metal-silicate partitioning, and geophysics
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P–T condition for the equilibrium of metal and silicate

(Tsuno et al. 2011; Yoshizaki and McDonough 2020).

Recently, it was estimated the radius of the liquid Martian

core is as large as 1830 ± 40 km and the mean density is

5.7 to 6.3 g/cm3 based on the Interior Exploration using

Seismic Investigations, Geodesy, and Heat Transport

(InSight) mission (Cottaar and Koelemeijer 2021; Stähler

et al. 2021). Abundant S is required to reduce the density to

the observed value for a Fe-S Martian core model. The

amount of S needed based on Martian seismic observations

exceeds that constrained by geochemical and cosmo-

chemical models (\ 19 wt%) and the S content of the most

S-abundant EH chondrites (Steenstra and van Westrenen

2018; Brennan et al. 2020). Therefore, other light elements

including O, C, and/or H may be added to satisfy the low

density of Martian core. A combination of 10–15 wt% S,

5 wt% O, 1 wt% C, and 1 wt% H has been suggested as the

upper limits to jointly satisfy constraints from geophysical,

geochemical, and cosmochemical aspects (Stähler et al.

2021).

4.4 Moon

As the only satellite of Earth, the Moon formed from the

giant impact event. Seismic observation reveals that a solid

inner core and a liquid outer core exist in the Moon,

overlain by a partially molten boundary layer (Weber et al.

2011). Light elements are required in the liquid core for the

density deficiency, but the species and content of light

elements are still debated (Weber et al. 2011; Righter et al.

2017; Garcia et al. 2019). C and S are the most likely

candidates because of the observation of S and C from

lunar samples and the partitioning properties of C and S

between silicate and metal (Chi et al. 2014; Righter et al.

2017; Steenstra and van Westrenen 2017). Si and O are

unlikely to be the dominant light elements due to their low

partition coefficients during the lunar core formation

(Ricolleau et al. 2011). C is weak in reducing the density of

Fe alloys compared to S (Zhu et al. 2021). If C is the only

light element in the lunar core, the Fe–C density cannot be

reduced to the seismically observed value even at the

eutectic point (Fei and Brosh 2014). If S is the only light

element, 10–27 wt% S is needed to meet the observed

density while no more than 6 wt% S is needed to meet the

liquidus temperature of the lunar core (Morard et al. 2008;

Garcia et al. 2019). However, some new works using

geochemical constraints suggest a low S and C lunar core

(Righter et al. 2017; Steenstra et al. 2018).

4.5 Vesta

The asteroid 4-Vesta is the parent body of HED (howardite,

eucrite, diogenite) meteorites (McCord et al. 1970; Scott

et al. 2009). Radiogenic isotope research on the HED

meteorites indicated that the core-mantle differentiation in

Vesta takes place within the first 2.5 ± 1.2 Ma after

forming CAIs (Touboul et al. 2015; Hublet et al. 2017).

The depleted siderophile elements in HED and the gravi-

tational moment J2 of 0.03178 also prove the existence of a

metallic core (Palme and Rammensee 1981; Holzheid and

Palme 2007; Russell et al. 2012). The P–T-fO2-composi-

tion conditions during the core formation have been studied

based on the siderophile element depletion, isotopic com-

position, and thermo-chemical modeling (Holzheid and

Palme 2007; Pringle et al. 2013; Neumann et al. 2014;

Steenstra et al. 2016; Kiefer and Mittlefehldt 2017). The

equilibrium condition has atmospheric pressure,

1725–1850 K, and IW-2.30 ± 0.15. The main light ele-

ment in the core is sulfur, up to 12.8 wt% or 16 wt%

corresponding to the bulk composition of H chondrite or

3/4 H ? 1/4 CM chondrites, respectively (Toplis et al.

2013; Steenstra et al. 2016, 2019).

5 The way forward

We have reviewed the various scenarios of terrestrial pla-

net formation and differentiation, and the current under-

standings of light elements in the iron-rich core. In the past

few decades, many remarkable achievements have signif-

icantly promoted the knowledge frontiers of the deep

interiors and evolution of Earth and other terrestrial plan-

ets. However, many mysteries and contradictions remain in

the existing literature. Further exploration and novel

methods are required to overcome the obstacles ahead,

including.

(1) Reliable experimental conditions. For instance,

stable and homogenous P–T conditions are essential

for the chemical equilibrium between metal and

silicate. Moreover, the latter is necessary to obtain

precise partitioning coefficients for light elements.

(2) The Fe–X–Y ternary system or multiple systems.

More than one kind of light element likely exists

present in iron-rich cores. Thus, traditional studies

on the Fe–X binary systems are outdated to some

extent.

(3) Coupling of chemical and physical constraints. Fe-

rich compounds constrained by high-pressure min-

eral physics may not be realistic from cosmochem-

ical and geochemical aspects. However, the

combination of chemical and physical constraints

can provide more reasonable estimates for the light

matter in the core.

(4) Exploration of other terrestrial planets and asteroids.

The ongoing exploration of the Moon and Mars will
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update our understanding of the general rules of

planet formation and differentiation. In addition,

new knowledge can be obtained by comparing the

similarities and differences between terrestrial plan-

ets and other interstellar objects.

(5) Novel computing technologies. With the develop-

ment of computation, many advances have been

made in these research fields. For example, the

emerging research model overlaps of machine

learning with numerical modeling, seismicity, crys-

tal structure prediction algorithms, and many others.

Thus, using new computational techniques can help

gain a better understanding of the evolution of

terrestrial planets.
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