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Abstract If the photosynthetic organisms assimilated only
CO, in the Archean atmosphere, hydroxide ion in the
Archean seawater would not increase. If plants would not
consume bicarbonate as a direct substrate during photo-
synthesis, it is difficult to explain the evolution of Earth’s
environment. To date, it is generally accepted that photo-
synthetic O, evolution of plants come from water photol-
ysis. However, it should be debated by evaluating the effect
of bicarbonate in photosynthetic O, evolution, analyzing
the role of carbonic anhydrase (CA) in photosynthetic O,
evolution, and the relationship between thylakoid CA and
photosynthetic O, evolution. In the paper, I propose that
bicarbonate is directly used as substrate to participate in
photosynthetic O, evolution. The rationality of bicarbonate
photolysis of plants is discussed from the thermodynamics
and evolution of Earth’s environment. The isotopic evi-
dence that bicarbonate is not the direct substrate of pho-
tosynthetic O, release is reexamined, and the new
explanation of bicarbonate photolysis in photosynthetic O,
evolution is proposed.
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Seemingly final verdict

Carbon dioxide as the substrate of photosynthesis has been
generally accepted, but bicarbonate as the substrate of
photosynthesis has been controversial. At present, the role
of bicarbonate in photosynthesis and oxygen evolution is
specious, even contradictory. Some researchers believe that
bicarbonate can stimulate the oxygen release of plants,
which depends on either the acceptor side of Photosystem
II (Van Rensen & Xu 1999; Van Rensen 2002) or the donor
side of Photosystem II to stable O, evolving com-
plex(Klimov et al. 1995a,b; Baranov et al. 2000). However,
some researchers argue that bicarbonate play a direct role
in oxygen evolution of plants (Stemler 1980, 2002), or no
evidence provide for that it coupled and bound in the O,
evolving complex of Photosystem II (Clausen et al. 2005;
Aoyama et al. 2008; Shevela et al. 2008; Ulas et al. 2008).
Meanwhile, some isotopic evidence presents that bicar-
bonate does not work as a direct substrate in photosynthesis
(Stemler & Radmer 1975; Metzner et al. 1979; Radmer &
Ollinger 1980; Clausen et al. 2005), which makes the
majority of people reach a consensus that oxygen released
by plants must come from water in photosynthesis.

Bicarbonate effect in photosynthetic O, evolution

In 1958, Otto Warburg and Giinter Krippahl firstly dis-
covered that bicarbonate can stimulate the Chlorella
release oxygen under the action of artificial reductant
(Warburg & Krippahl 1958). In the following 60 years,
many scientists studied the “bicarbonate effect” from dif-
ferent aspects of photosynthetic O, evolution, and got their
own views and opinions, which are obtained from different
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works on different research materials under different con-
ditions by using different means and methods.

Effect of bicarbonate on both the acceptor
and the donor side of Photosystem II

The first evidence for an effect of bicarbonate on the
acceptor side of Photosystem II was provided by
Wydrzynski and Govindjee (1975), who measured
chlorophyll a fluorescence induction kinetics in spinach
chloroplasts after CO, depletion in the presence of various
artificial electron donors. They found that the variable
fluorescence yield measured as a function of decreasing
bicarbonate concentrations are qualitatively similar to
those observed with increasing concentrations of 3-(3,4-
dichlorophenyl)-1,1-dimethylurea (DCMU) which is
known to block the reducing side in Photosystem II (Wy-
drzynski & Govindjee 1975). Afterwards, Govindjee et al.
(1976) found that the chlorophyll a fluorescence decayed
after the third flash in bicarbonate-depleted chloroplasts,
and the decay was faster in the chloroplasts to which
bicarbonate was added (Govindjee et al. 1976).

In 1977, Fred Crane and Rita Barr found that bicar-
bonate inhibited the DCMU-insensitive silicomolybdate
reduction by Photosystem II but stimulated the O, evolu-
tion associated with ferricyanide reduction in presence of
dibromothymoquinone (DBMIB) (Crane & Barr 1977).
Paul Jursinic and Alan Stemler (1986) found that the
photosynthetic electron flow between Q, (the primary
quinone acceptors) and Qg (the secondary quinone accep-
tors) and Qg and the plastoquinone pool was the slowest
when formate is bound, but the highest when bicarbonate is
bound (Jursinic & Stemler 1986). Meanwhile, van Rensen
and Vermaas (1981) also found that the Hill reaction with
ferricyanide does not require bicarbonate in trypsin-treated
isolated broken pea in which ferricyanide accepts electrons
directly at the Q4 site (van Rensen & Vermaas 1981). All
the above findings proved that the site of the bicarbonate
effect was between Q4 and the plastoquinone pool.

Where are in specific sites of the bicarbonate effect?
Many scientists have explored to reveal that some herbi-
cides such as atrazine decrease the apparent affinity of the
thylakoid membrane for bicarbonate when they studied the
effects of bicarbonate and herbicides on electron transport
in isolated chloroplasts, and suggested that the binding sites
of bicarbonate are located on that of herbicide action (D1
protein) in Photosystem II (van Rensen and Vermaas 1981;
Khanna et al. 1981; Snel and van Rensen 1983, 1984;
Stemler and Murphy 1983).

Meanwhile, scientists demonstrate that bicarbonate is a
bidentate ligand of the nonheme iron through measuring
the electron paramagnetic resonance (EPR) spectra, and
Mossbauer spectrum, examining Fourier transform infrared

(FTIR) difference spectroscopy (Bowden et al. 1991; Diner
and Petrouleas 1987; Semin et al. 1990; Hienerwadel and
Berthomieu 1995). Afterwards, scientists have also
observed this bidentate ligand of the nonheme iron between
two quinone acceptors in higher plants, algae, and
cyanobacteria from crystal structure information (Guskov
et al. 2010; Umena et al. 2011; Ago et al. 2016; Wei et al.
2016).0n the one hand, bicarbonate in Photosystem II was
deduced to stabilize the Qa-Fe-Qpg structure, keep a fit
distance between Q, and Qg, accelerate the electron
transfer between these two quinone acceptors by facilitat-
ing the protonation of reduced Qg (van Rensen et al. 1999;
Shevela et al. 2012). On the other hand, the release of
bicarbonate from the ligand can downregulate Photosystem
II and oxygen evolution, thereby protect Photosystem II
against photodamage (Brinkert et al. 2016). Besides,
Tikhonov et al. (2017) quantified the amount of bicar-
bonate-bind per Photosystem II reaction center in spinach
Photosystem II membrane fragments. The value of
1.1 & 0.1 in bicarbonate-bind per Photosystem II reaction
center demonstrated that Photosystem II binds one bicar-
bonate molecule as ligand to the non-heme iron (Tikhonov
et al. 2018).

In the early 1970s, Stemler and Govindjee had observed
the effect of bicarbonate on the donor side of Photosystem
II, who found that bicarbonate increasing 4 to fivefold the
rate of dichlorophenol indophenol reduction by isolated
maize chloroplasts, and act close to the oxygen-evolving
site (Stemler and Govindjee 1973). They deduced that one
of the sites was before at or near the oxygen-evolving
mechanism itself from chlorophyll a fluorescence infor-
mation (Stemler and Govindjee 1974).

Afterwards, many evidences demonstrated that bicar-
bonate plays roles in the donor side of Photosystem II.
Assembly of the inorganic core of the oxygen-evolving
center is an important role. Klimov et al. demonstrated that
bicarbonate participates in the formation of the Mn-cluster,
is essential for water oxidation in subchloroplast membrane
fragments (Klimov et al. 1995a,b 1997). Allakhverdiev
et al. (1997) demonstrated that bicarbonate is an essential
constituent of the oxygen-evolving center of photosystem
II (Allakhverdiev et al. 1997). Baranov et al. (2000, 2004)
demonstrated that bicarbonate as a cofactor accelerates
assembly of the manganese cluster of the photosynthetic
water oxidizing complex in photosystem II (Baranov et al.
2000, 2004). Kozlov et al. (2010) demonstrated that the
composition and stability of Mn>*-bicarbonate complexes
is involved in photoinduced electron transfer from Mn*" to
reaction centers of photosystem II (Kozlov et al. 2010).

Mobile bicarbonate has a more interesting role. Shevela
et al. (2013) found that free or weakly bound bicarbonate
had a possible function at the water-splitting side of Pho-
tosystem II (Shevela et al. 2013). Koroidov et al. (2014)
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demonstrate that bicarbonate acts as a mobile proton
acceptor during water oxidation (Koroidov et al. 2014).

Synthesizing evidences from the above two aspects as
well as other works, and now it is currently acceptable that
bicarbonate affect photosynthetic oxygen evolution on both
the acceptor and the donor side of photosystem II (van
Rensen et al. 1999; Stemler 2002, Shevela et al. 2012;
Tikhonov et al. 2018).

Bicarbonate effect neither in the acceptor side
nor the donor side of Photosystem II

In fact, it seems to has inadequate evidences to prove
whether the acceptor or the donor or both side of Photo-
system II during photosynthetic O, evolution influenced by
bicarbonate. In donor side of photosystem II, Shevela et al.
(2008) found that bicarbonate is not a tightly bound con-
stituent, has only ‘indirect’ effects on the oxygen-evolving
center in Photosystem II using membrane-inlet mass
spectrometry (MIMS) and isotope labelling techniques
(Shevela et al. 2008). Aoyama et al. (2008) suggested that
bicarbonate is neither a ligand nor a cofactor closely cou-
pled to the oxygen-evolving Mn cluster in Photosystem II
using Fourier transform infrared (FTIR) difference spec-
troscopy (Aoyama et al. 2008). Ulas et al. (2008) observed
no tightly bound bicarbonate ions from the active site using
mass spectrometry (Ulas et al. 2008). Clausen et al. (2005)
was in contradiction with Koroidov et al. (2014) to exclude
that exchangeable bicarbonate is the substrate for photo-
synthetic oxygen evolution (Clausen et al. 2005).

Similarly, bicarbonate affect photosynthetic O, evolu-
tion on the acceptor side of Photosystem II was also
questioned. Bowden et al. (1991) found that bound bicar-
bonate is absent at pH 6.0, but present at pH 7.5, and
bicarbonate depleted isolated chloroplasts with displace-
ment by another anion is not suitable to study bicarbonate
effect as well as the status of bicarbonate binding (Bowden
et al. 1991). van Rensen and Vermaas (1981) found the
binding site for bicarbonate between quinone and plasto-
quinone in isolated thylakoid membranes of Synechococ-
cus leopoliensis is absent, but this blue-green alga can
release O,, indicating bound bicarbonate in the acceptor
side of Photosystem II is not necessary for photosynthetic
O, evolution (van Rensen and Vermaas 1981). Funda-
mentally, bound bicarbonate to stabilize the Qa-Fe-Qgp
does not match the decay of the fluorescence intensity after
three or more flashes. Crystal structure of oxygen-evolving
Photosystem II does not display the bidentate ligand bound
bicarbonate (Umena et al. 2011). Therefore, a more rea-
sonable theoretical explanation is needed to settle the dis-
pute under the considering all data and evidence on
“bicarbonate effect”.
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Bicarbonate as a direct substrate involving
carbonic anhydrase

Carbonic anhydrase (CA, EC 4.2.1.1) is ubiquitously found
in most cells from all kingdoms of life, sometimes several
forms exist in the same cell. CA catalyzed the reversible
conversion of bicarbonate to carbon dioxide, which is one
of the fastest enzymatic reactions. CA plays many physi-
ological functions in photosynthesis, respiration, pH
homeostasis and ion transport, etc.

The proportions of algal inorganic carbon sources or
inorganic carbon utilization pathway was quantified
using bidirectional isotope labeling tracer technique when
Chlamydomonas reinhardtii and Chlorella pyrenoidosa
was cultured in medium under different concentration of
bicarbonate added (Wu et al. 2015). Both C. reinhardtii
and C. pyrenoidosa have a great proportion of bicarbonate
utilization pathway, larger than 76%, or even close to
100%. However, the proportion of bicarbonate added as
algal inorganic carbon sources, which increases with the
increasing concentration of bicarbonate added, is small
(Table 1). It demonstrates that C. reinhardtii or C.
pyrenoidosa assimilate bicarbonate not only as a direct
substrate, but also as most dominant way for inorganic
carbon assimilation. However, CA is completely inhibited
when the culture medium adding 10.0 mmol/L acetazo-
lamide, an inhibitor of extracellular CA. In this time, the
pathway of utilization bicarbonate by algae, which
increases with the increasing concentration of bicarbonate
added, decreases dramatically (Table 2). It suggests that
CA is convenient to that photosynthetic organisms use
bicarbonate as a direct substrate (Wu et al. 2015).

Thylakoid CA versus photosynthetic oxygen
evolution

Photosystem II indeed possessed CA activity

There are two types of CA in the chloroplast, one was a
soluble CA located in the stroma, a second was tightly
bound to thylakoids membranes, called thylakoid CA
(tCA) (Komarova et al. 1982; Pronina et al. 2002; Moskvin
et al. 2004; Rudenko et al. 2006, 2007). Many studies of
tCA from maize (Stemler 1986), wheat (Khristin et al.
2004), pea (Moskvin et al. 1995) and Arabidopsis (Igna-
tova et al. 2011) chloroplasts showed the association of
enzymatic activity with Photosystem II. A lot of evidence
showed that Photosystem II indeed possessed CA activity.

Acetazolamide inhibits photosynthetic electron transfer
in Photosystem II and the acetazolamide-induced inhibition
is totally reversed by the addition of bicarbonate (Shitov
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Table 1 The proportion of [NaHCO3] */ (mmol/L)  C. reinhardtii C. pyrenoidosa
carbon sources and utilization
pathway when C. reinhardtii P Is A P Is I
and C. pyrenoidosa was
cultured in medium under 0 351 £027 0.00 0.96 4244022 0.00 077
different concentration of 0.50 4.00+£030 0.02 097 4314022 0.03 081
;gf‘;’onme added (Wu et al. 2.00 4114018 009 1.00(1.05)§ 451 4+023 008 092
4.00 426 £020 0.18 1.00(1.02) § 528 +0.17 0.17 1.00 (1.10) §
8.00 497 £023 030 1.00(1.100§ 4.67 £0.21 0.41 1.00 (1.29) §

The data is represented by mean & SE (n = 3 ~ 4). P, the algal proliferation multiple; f, the proportion of
bicarbonate added as carbon sources to the whole carbon sources used by microalgae; f;, the proportion of
bicarbonate utilization pathway to the whole carbon utilization pathway of microalgae; *The initial con-
centration of NaHCO5; added in medium; §The data in brackets were calculated values, whereas those out
of brackets were corrected values considering the errors from the determination of 8'*C and the difference

induced by growth status

Table 2 The proportion of

e [NaHCOs;] */ (mmol/L) C. reinhardtii C. pyrenoidosa

carbon sources and utilization
pathway when C. reinhardtii P I b P Is A
and C. pyrenoidosa was
cultured in medium with 0 240 £ 022 0.00 0.00(—0.28)§ 2.11+0.17 0.00 0.00(— 0.42) 8§
10.0 mThOl/L acetazolami@e 0.50 288 £024 0.00 0.00(—0.05)8§ 253+025 0.03 0.00(— 0.24) 8§
under different concentration of 5 297 +024 017 0.1 3.09+022 018 002
bicarbonate added (Wu et al.
2015) 4.00 340 +£ 021 023 0.24 322+ 022 0.26 0.05

8.00 355+ 0.19 034 0.18 4.02 £0.19 034 0.08

Same as that of Table 1

et al. 2011). Meanwhile, acetazolamide and imidazole
suppressed the the photoinduced yield of chlorophyll flu-
orescence (Pronina et al. 2002). Formate, an anionic inhi-
bitors, similarly decreased tCA activity, and the inhibition
of other anionic inhibitors, such as bicarbonate, I, is same
for both Photosystem II and tCA activity (Stemler 1980,
1986).

Both tCA and Photosystem II photosynthetic activities
are inhibited by Zn*" (Tripathy and Mohanty 1980; Rashid
et al. 1991; Stemler 1997). The effects of C1~ on tCA was
similar to that on Photosystem II activities (Stemler
1986, 1997; Lu and Stemler 2007). The effects of Ca*" and
Mn?" on tCA was also similar to that on Photosystem II
activities (Stemler 1986, 1997; Lu and Stemler 2007).

Photosystem II inhibitors, 3-(3,4-dichlorophenyl)-1,1’-
dimethylurea (DCMU) and hydroxylamine, similarly
inhibited the activity of tCA (Rudenko et al. 2015). Strong
light inhibited both tCA activity and electron transport of
Photosystem II, induced photoinhibition, and Photosystem
II modifiers hydroxylamine and atrazine prevented this
“photoinhibition” (Stemler 1986; Kyle et al. 1984).

The unique characteristics of tCA among known CA
types was that tCA activity was sensitive to the surround-
ing redox-potential, and was similar with that of Photo-
system II (Bearden and Malkin 1973; Stemler and Jursinic
1993; Moubarak-Milad and Stemler 1994). Far-red light

also stimulates both the tCA activity and Hill reaction of
Photosystem II (Govindjee et al. 1960; Stemler 1997). In
addition, maize mesophyll chloroplasts were found that an
antibody produced against Chlamydomonas reinhardtii’s
thylakoid lumen CA(Cah3) reacts with a protein in enri-
ched Photosystem II membranes (Lu and Stemler 2002).

Actually, in the last two decades, it is widely accepted
this view that Photosystem II possessed CA activity.
Numerous studies on the nature of tCA have shown that
Photosystem II-membranes of plants, such as maize, pea,
wheat, spinach, Chlamydomonas reinhardtii, Thermosyne-
chococcus elongatus, Arthrospira maxima, contained two
CAs, one was called extrinsic CA, is removable by wash-
ing PSII membrane fragments with 1 M CaCl,, the other
tightly associated with the core Photosystem II complex
called as intrinsic CA (Dai et al. 2001; Lu and Stemler
2002; Villarejo et al. 2002; Khristin et al. 2004; Moskvin
et al. 2004; Ignatova et al. 2006; Hillier et al. 2006;
Rudenko et al. 2006, 2007; Enami et al. 2008; Shitov et al.
2009).

According to the known data, there are great differences
in the characteristics between the extrinsic CA and the
intrinsic CA of Photosystem II, such as Table 3.
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Table 3 The difference of the characteristics of CAs in Photosystem II-membranes

Characteristics Intrinsic CA Extrinsic CA Materials References
Position in Photosystem II Photosystem II core- Near Photosystem II at the lumenal Pea Khristin et al. 2004; Lu
complex side of thylakoid membrane, in the and Stemler 2002;
vicinity of the OEC Shitov et al. 2009;
Effect of C1™ Continue to increase Maximum of activity at 5 ~ 20 mM, Maize, Pea Lu and Stemler 2007
the activity up to at afterwards declined, no activity at
least 400 mM 80 mM
Effect of pH The hydration activity =~ The highest dehydration activity at pH Maize Lu and Stemler 2007
insensitive to pH below 6, and immeasurable above
6.5
Direction of reaction hydration dehydration Maize Lu and Stemler 2007
Effect of Triton X-100 Maximum of activity =~ No detected effect Pea Pronina et al. 2002;
at triton/Chl ratio of Khristin et al. 2004
1.0
Sulfonamide inhibitors action ~ High sensitivity to EZ  Stimulation of activity by AZ Pea, Ignatova et al. 2006;
with Iso = 107° M (at10~*—=107> M), high sensitivity Arabidopsis Shitov et al. 2009, 2011
to EZ with Isy = 107" M thaliana
Effect of divalent cations ND Stimulation of activity by Mn>*, Pea Shitov et al. 2009
inhibition of activity by Zn*"
Apparent molecular mass ? 33 kD, 50 kD, 24 kD, 18 kD Pea Lu and Stemler 2002;
Rudenko et al. 2006;
Shitov et al. 2009
Site of bicarbonate-bound ? None Spinach Tikhonov et al. 2018

AZ, Acetazolamide; EZ, Ethoxyzolamide; OEC, Oxygen-evolving center; ND, No detecting

Photosystem II core-complex with the carrier
of photosynthetic O, evolution and CA activity
not CA in the conventional sense

According to Table 3, there are quite different properties
among the extrinsic CA, the intrinsic CA in Photosystem Il
and the soluble CA, and the functions they perform are also
quite different. So far, the intrinsic CA of Photosystem II
has not been isolated. Some inhibitors exhibit good inhi-
bitory effect on CA in Photosystem II, but do not affect
much photosynthetic activity (Rodionova et al. 2017).
Although some inhibitors can inhibit the activity both
photosynthetic and CA in Photosystem II, the degree of
inhibition is different. For example, one of the Cu(Il)-
phenyl sulfonylhydrazone complexes inhabits CA activity
of Photosystem II by 100%, but the Photosystem II pho-
tosynthetic activity by only 66.2% (Karacan et al. 2014).
The activity of oxygen evolution was suppressed, but that
of the intrinsic CA in Photosystem II was unchanged after
removing manganese clusters, which demonstrated that CA
activity was not directly correlated with O, evolution
activity, and is independent of the presence of manganese
clusters (Dai et al. 2001).The CA (CA[Mn]) manganese-
substituted the active-site zinc functions as peroxidase, and
produces O, in the presence of hydrogenperoxide and
bicarbonate (Okrasa & Kazlauskas 2006). It can be seen
that Photosystem II core-complex has not only the activity
of photosynthetic O, evolution, but also that of CA. The
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manganese clusters (MnyCaOs), which oxygen atoms as
oxo bridges linking the manganese atoms may be catalyzed
for dioxygen formation to produce oxygen (Umena et al.
2011), were involved in photosynthetic O, evolution of
Photosystem II. However, Photosystem II core-complex
itself cannot be isolated, and its properties are obviously
different from common zinc-contained CA. Therefore, it
can be said that Photosystem II core-complex is the carrier
of photosynthetic oxygen evolution and CA activity not
CA in the conventional sense.

Dehydration and hydration of thylakeid CA
depended on pH

Oxygen evolution of Chlorella illuminated in the presence
of nitrate completely ceases when carbon dioxide is
absorbed by alkali (Warburg et al.1965), it demonstrates
that the premise of oxygen evolution should be in present
of inorganic carbon. Moreover, Koroidov et al. (2014)
proved that that bicarbonate functions not only as a mobile
proton acceptor, but also results in a light-driven produc-
tion of both O, and CO, (Koroidov et al. 2014). Mean-
while, bicarbonate was found that it fit to act as a tridentate
bridge between Mn'Y and Ca®*in architecture of the pho-
tosynthetic oxygen-evolving center (Ferreira 2004). These
evidences seem to demonstrate that bicarbonate rather than
water as direct substrate take part in photosynthetic O,
evolution. Water incorporating CO, into bicarbonate was
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mistaken for direct substrate during photosynthetic O,
evolution.

Whether on the acceptor or on the donor of side of
Photosystem 1II, existence of bicarbonate binding is
uncertainty, which depends on pH (Bowden et al. 1991).
Lu and Stemler (2007) showed that intrinsic CA in Pho-
tosystem II core-complex just had the hydration activity
insensitive to pH, and extrinsic CA in the vicinity of the
oxygen-evolving center just had the dehydration activity
sensitive to pH, the highest dehydration activity was at pH
below 6, and immeasurable above 6.5. Moreover, the
hydration activity of intrinsic CA in Photosystem II core-
complex is greater 5 times than the dehydration activity of
extrinsic CA (Lu and Stemler 2007). It suggests that the
photosynthetic O, evolution of Photosystem II core-com-
plex is accompanied by the hydrolysis of inorganic carbon.
Similarly, it is demonstrated that that bicarbonate as direct
substrate take part in photosynthetic O, evolution. Photo-
system II core-complex should be definited inorganic car-
bon oxidase/hydrolase opposite to  Ribulose-1,5-
bisphosphate  carboxylase/oxygenase (Rubisco). The
dehydration of extrinsic CA provides protons, and the
hydration of intrinsic CA provides bicarbonate for photo-
synthetic oxygen evolution. PSII core-complex combined
with extrinsic CA provides two basic substrates, proton and
bicarbonate, for photosynthetic oxygen evolution. The
equation of photosynthetic oxygen evolution in Photosys-
tem II was written as following:

H" + HCO; — 120, + 2¢” + 2H" + CO;

Additionally, the bicarbonate-bind as ligand to the non-
heme iron on the acceptor side of Photosystem II depended
on the pH, which was influenced by the coupling of Pho-
tosystem I. When the protons produced by photosynthetic
O, evolution were moved through Photosystem I, the pH
increased, and the ligand is present. Otherwise, the ligand
is absent (Bowden et al. 1991). The consumption of pro-
tons by Photosystem I regulates the electron flow and
photophosphorylation in Photosystem II (Carr and Axels-
son 2008; Fedorchuk et al. 2018), and eventually, adjusts
photosynthetic O, evolution. That is to say, another func-
tion of bicarbonate is to regulate photosynthetic O,
evolution.

Evolution of Earth’s environment versus
photosynthetic O, evolution using bicarbonate
as a direct substrate

Obviously, if plants would not consume bicarbonate as a
direct substrate during photosynthesis, it is difficult to
explain the evolution of Earth’s environment. The con-
centration of CO, in the Archean atmosphere before 2500

million years was 0.9 ~ 900 kPa, and that in Contempo-
rary atmosphere only 0.03 kPa. Correspondingly, the con-
centration of bicarbonate in the Archean seawater was
15 ~ 15,000 mM, and that in Contemporary seawater
2 mM (Dismukes et al. 2001). If the photosynthetic
organisms assimilated only CO, in the Archean atmo-
sphere, bicarbonate in the Archean seawater decreased
depending on dissociation equilibrium. The hydroxide ion
in the Archean seawater would not increase. As the system
in the Archean seawater with high concentration of car-
bonic acid and bicarbonate was buffer, the pH value would
not change. In fact, it is estimated that seawater pH grad-
ually increased from ~ 6.5 and 7.0 of Archean to ~ 7.5
and 9.0 of Phanerozoic (Halevy & Bachan 2017). It partly
accounts for the increase of pH in seawater which marine
organisms utilized bicarbonate as the direct substrate dur-
ing photosynthesis. In the Archean seawater, organisms
used bicarbonate as a direct substrate, and reduced the
concentration of bicarbonate during photosynthesis.
Meanwhile, hydrogen ions in environment simultaneously
entered the organism to achieve an electrochemical bal-
ance, resulting in the rise of pH in the Archean seawater.

Thermodynamic convenience of bicarbonate
photolysis

Thermodynamically, the standard free energy differences
in the chemical equilibria, H,O — 1/2 O, + 2¢~ + 2HT,
was 37.3 kcal/mol, and that in the chemical equilibria,
H* + HCO;~ — 12 0, + 2e~ + 2H" + CO,,
24.8 kcal/mol (Dismukes et al. 2001). The free energy
required for O, evolution using bicarbonate as the substrate
is significantly lower than that using water as the substrate
during photosynthesis of organisms. Therefore, the photo-
synthetic organisms may be more likely to photolysis
bicarbonate to release O, and CO,, then CO, incorporate
into the Calvin cycle for carbon fixation.

Reexamining the isotopic evidence

We reexamine the isotopic evidence that bicarbonate is not
the direct substrate of photosynthetic O, release according
to our previous work (Wu et al. 2015). From the experi-
ment of Metzner et al. (1979), it can be found that at least
39% of oxygen release from bicarbonate during light
reaction in photosynthesis of Ankistrodesmus braunii by
using isotope binary mixture model when the algae were
absent in CA activity. The proportion of photosynthetic O,
from bicarbonate will be larger when Ankistrodesmus
braunii were present in CA activity.
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In HC'®0;~ labelling experiment from Radmer and
Ollinger (1980), the results can be interpreted as that
HC'®0;~ added in reaction system firstly took place the
chemical equilibria, H" + HC'®*0;~ « H,'*0 + C'*0,,
then, H,'"°O(H,'®
0) + C!%0,(C'®0,) — H" + HC'®0; (HC'®05;7). The
isotopic composition of the CO, at the beginning of the
flash was C'®0,, 0.031; C'*'®0, 0.320; C'®0,, 0.649.
Therefore, C'®*0, forming HC'®0;~ again accounts for
only 23.6% of the total CO, in the system. Meanwhile,
H,'®0 forming HC'®0;~ again accounts for less than 5 %o
of the total H,'®O in the system with 10 mM of bicar-
bonate. That is said that less than 5 %o of the oxygen
release from HC'®05™. This is consistent with the experi-
mental results of Radmer & Ollinger (1980). However,
here, the explanation is obviously different from theirs. I
debate to propose that bicarbonate is directly used as
substrate to participate in photosynthetic O, evolution,
resulting in the chemical equilibria, HY + HCO;~ — 1/2
0O, + 2¢~ + 2H" + CO,, which provides with electrons,
and accumulates CO, into Calvin cycle for photosynthetic
carbon assimilation. The same interpretation was suit-
able to apply in the work of Stemler & Radmer (1975).

Conclusions

It is generally accepted that O, released by plants come
from water in photosynthesis, which should be debated. In
fact, bicarbonate is directly used as substrate to participate
in photosynthetic O, evolution, resulting in the chemical
equilibria, =~ H' 4+ HCO3;~ — 1/2 0, + 2¢~ + 2H"
+ CO,, which provides with electrons, and accumulates
CO, into Calvin cycle for photosynthetic carbon
assimilation.
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