XPS analysis for mechanism of the interaction between Ca²⁺ and muscovite

WANG Yu-bin, WEN Kan*, ZHANG Lu, WANG Wang-bo

(College of Materials and Mineral Resources, Xi' an University of Architecture & Technology, Xi' an 710055, China)

Abstract: The muscovite samples were characterized by XPS analysis and the interaction mechanism of Ca²⁺ on the muscovite in the sodium oleate system has been investigated. The results show that the floatability of muscovite can be significantly improved by adding Ca²⁺ when the pH values of the pulp are in the alkaline range. Especially, the muscovite recovery rate can reach to 65.20 % under conditions of the pulp pH value of 12, the sodium oleate concentration of 9. 20×10⁻⁴ mol/L, and the Ca²⁺ concentration of 2. 70×10⁻⁴ mol/L. The reason for the improvement of the floatability of the muscovite by Ca²⁺ is that Ca²⁺ can be firstly adsorbed on the muscovite surface in forms of Ca²⁺, Ca(OH) +, and Ca(OH) 2 which were interacted with oleate ions in the pulp to have formed hydrophobic calcium oleate. Moreover, at the Ca²⁺ concentration of 2.70×10⁻⁴ mol/L for the pulp, the zeta potential on surface of the muscovite cane be positively increased to -7.73 mV. This will result in the increase of the local positive region on surface of the muscovite, then the enhancement of electrostatic adsorption capacity of oleate ions on surface of the muscovite, and finally the improvement of floatability of the muscovite.

Keywords: Sodium oleate; Calcium ion; Muscovite; Activation; Mechanism